This thesis deals with the combined ultra-high vacuum (UHV) and electrochemical (EC) studies of selected iron oxide surfaces, namely Fe3O4(001) and -Fe2O3(012). The state-of- the-art knowledge regarding these surfaces is briefly reviewed, and importance of understanding these materials in the electrochemical environment is discussed. The design of the transfer system between UHV and EC environment is presented; individual features of the system are thoroughly discussed and the system is used for testing the stability of the Fe3O4(001) (2×2)R45° surface reconstruction in ambient conditions. The experimental results presented in this thesis show that the Fe3O4(001) (2×2)R45° reconstruction, utilized as an adatom array for single atom catalysis studies, survives both exposure to air and to liquid water, if the exposure is achieved in well-controlled fashion. Further, this thesis presents the first-ever atomic scale scanning tunneling microscopy (STM) study of the -Fe2O3(012) surface, which is important for photoelectrochemical water splitting. STM images of two surface reconstructions of the -Fe2O3(012) surface known to date are presented. A bulk terminated model of the (1×1) reconstruction is confirmed and a novel surface structure model for the (2×1) reconstructed surface is proposed. Adsorption studies of H2O and O2 on the (2×1) reconstructed surface are documented by timelapse STM.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:254329 |
Date | January 2016 |
Creators | Jakub, Zdeněk |
Contributors | Vanýsek, Petr, Bartošík, Miroslav |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0025 seconds