Return to search

Cell adhesion and cell mechanics during zebrafish development

During vertebrate development, gastrulation leads to the formation of three distinct germlayers. In zebrafish a central process is the delamination and the ingression of single cells from a common ancestor tissue - that will lead to the formation of the germlayers. Several molecules have been identified to regulate this process but the precise cellular mechanisms are poorly understood. Differential adhesiveness, a concept first introduced by Steinberg over 40 years ago, has been proposed to represent a key phenomena by which single hypoblast cells separate from the epiblast to form the mesendoderm at later stages. In this work it is shown that differential adhesion among the germlayer progenitor cells alone cannot predict germlayer formation. It is a combination of several mechanical properties such as cell cortex tension, cell adhesion and membrane mechanical properties that influence the migratory behavior of the constituent cells.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:25182
Date07 December 2009
CreatorsKrieg, Michael
ContributorsMüller, Daniel, Heisenberg, Carl-Philipp
PublisherTechnische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds