Optical microscopy is the oldest form of microscopy that has been visually aiding scientific research. In our research, I have reported here two such optical microscopy techniques for two different projects. In the first project, we re-developed an instrumentation of a cost-effective, high-performing, single-molecular localization super-resolution microscopy setup that breaks the diffraction limitation barrier. Then we use a stochastic image capturing technique to capture the best precision image positions of gold nanoparticles. In our second project, we apply confocal microscopy technique to image DNA molecular nanoscale structural alterations of chromatin in cell nuclei of gut tissues caused by total body irradiation (TBI). We then quantify these alterations using a light localization technique called inverse participation ratio (IPR) using the confocal micrographs of the sample. Our results show radiation causes reduction and saturation of DNA spatial mass density fluctuations that were observed for different durations of post-irradiation.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-5152 |
Date | 25 November 2020 |
Creators | Hasan, Mehedi |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0025 seconds