Ce mémoire porte sur l'étude d'un système de gestion d'énergie électrique dans un système multi-sources soumis à des perturbations exogènes. L'application visée est l'alimentation d'une propulsion hybride diesel/électrique équipée d'un système d'absorption des pulsations de couple. Les perturbations exogènes considérées peuvent être transitoires ou persistantes. Une perturbation transitoire correspond à une variation rapide du couple de charge, due par exemple à une accélération ou une décélération du véhicule. Une perturbation persistante provient du système de compensation des pulsations de couple générées par le moteur thermique. Le premier objectif du contrôle est de maintenir constante la tension du bus continu. Le deuxième objectif est d'absorber dans un système de stockage rapide constitué de super condensateur ces perturbations qui peuvent à terme provoquer une usure prématurée de la batterie. Le troisième objectif est de compenser l'auto-décharge dans le super condensateur en maintenant constante sa tension nominale. Les deux sources (batterie et super condensateur) sont reliées au bus continu par l'intermédiaire de deux convertisseurs boost DC/DC. La commande consiste à piloter les rapports cycliques de chaque convertisseur. C'est un système non linéaire où la commande est multiplicative de l'état. L'approche classique consistant à résoudre les équations Francis-Byrnes-Isidori ne s'applique pas directement dans ce cas où la sortie et la matrice d'interconnection dépendent de la commande. De plus, si cette approche est bien adaptée au rejet de perturbations persistantes, elle montre ces limites pour le rejet de perturbations non persistantes combiné à des objectifs de régulation. Notre approche a consisté à écrire le système sous un formalisme Port-Controlled Hamiltonian et à s'affranchir de la contrainte de la dépendance de la matrice d'interconnection avec la commande en utilisant la théorie des perturbations singulières. La commande du système dégénéré peut ensuite être calculée par une approche passive. Les performances de cette commande ont été testées en simulation et à l'aide d'un banc d'essai expérimental. Les résultats montrent l'efficacité du système d'absorption des différents types de perturbation tout en respectant les deux objectifs de régulation. / This thesis presents the research of energy management in a battery/ultracapacitor hybrid energy storage system with exogenous disturbance in hybrid electric vehicular application. Transient and harmonic persistent disturbances are the two kinds of disturbances considered in this thesis. The former is due to the transient load power demand during acceleration and deceleration, and the latter is introduced from the process of the internal combustion engine torque ripples compensation. Our control objective is to absorb the disturbances causing battery wear via the ultracapacitor, and meanwhile, to maintain a constant DC voltage and to compensate the self-discharge in the ultracapacitor to maintain it operating at the nominal state of charge. The object system is nonlinear due to the multiplicative relation between the input and the state. The traditional approach to solve Francis-Byrnes-Isidori equations cannot be directly applied in this case since the interconnect matrix depends on the control input. Besides, even if this approach is well suited to the rejection of persistent disturbances, it shows the limits for the case of non-persistent disturbances which is also our object. Our contributed control method is realized through a cascade control structure based on the singular perturbation theory. The ultracapacitor current with the fastest motion rate is controlled in the inner fast loop through which we impose the desired dynamic to the system. The reduced system controlled in the outer slow loop is a Hamiltonian system and the controller is designed via interconnection and damping assignment. Simulations and experiments have been carried out to evaluate the control performance. A contrast of the system responses with and without the control algorithm shows that, with the control algorithm, the ultracapacitor effectively absorbs the disturbances; and verifies the effectiveness of the control algorithm.
Identifer | oai:union.ndltd.org:theses.fr/2015POIT2251 |
Date | 19 January 2015 |
Creators | Dai, Ping |
Contributors | Poitiers, Coirault, Patrick, Cauët, Sébastien |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.0029 seconds