Return to search

On Spectral Properties of Single Layer Potentials

We show that the singular numbers of single layer potentials on smooth curves asymptotically behave like O(1/n). For the curves with singularities, as long as they contain a smooth sub-arc, the resulting single layer potentials are never trace-class. We provide upper bounds for the operator and the Hilbert-Schmidt norms of single layer potentials on smooth and chord-arc curves. Regarding the injectivity of single layer potentials on planar curves, we prove that among single layer potentials on dilations of a given curve, only one yields a non-injective single layer potential. A criterion for injectivity of single layer potentials on ellipses is given. We establish an isoperimetric inequality for Schatten p−norms of logarithmic potentials over quadrilaterals and its analogue for Newtonian potentials on parallelepipeds.

Identiferoai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-7641
Date28 June 2016
CreatorsZoalroshd, Seyed
PublisherScholar Commons
Source SetsUniversity of South Flordia
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate Theses and Dissertations
Rightsdefault

Page generated in 0.0014 seconds