The literature concerning the injection moulding of engineering ceramics has been reviewed. This indicated that a number of claims had been made for the successful use of different organic binders during moulding and their removal prior to sintering. However, many of the claims were not supported by detailed/exact eScperimental evidence as to powder-binder compositions, moulding conditions, moulded properties, debinding times/cycles, or details of the structure and properties of the solid ceramic bodies produced. From the available information it was clear that there were few systematic and scientific investigations concerning the understanding of each stage of the injection moulding process. The present research programme has been carried out in two phases as follows. The first phase was concerned with the reinvestigation and re-evaluation of binder systems claimed to be successful for the injection moulding of alumina ceramics. The binders re-investigated included the thermoplastic-based binders such as polystyrene, polyacetal and atactic polypropylene and the water-based methylcellulose (Rivers) binder system. Alumina was chosen as the main powder to be investigated due to its simple handling and, highest applications amongst ceramic materials and on the basis that there is incomplete published work for almost every step of the injection moulding process. During the first stage of this work the optimum properties such as powder-binder compositions, mixing and moulding conditions, debinding properties, green and sintered densities provided by each binder system were determined. The results of these investigations showed that all the previous (re-evaluated) binder systems had major limitations and disadvantages. These included low volume loading (64 % maximum) of the alumina powder resulting in rather low sintered densities (96 % maximum-of theoretical density) and very long debinding times in the case of the thermoplastic-based binders. it ry low alumina volume loading (55 % maximum resulting in a 94 % . sintered theoretical density) and long moulding cycle time (- 5 min) along with adhesion and distortion problems during demoulding occurred in the case of the water-based methylcellulose binder system. Further work did not appear worthwhile. The newly developed binder systems have been used with a number of other powders such as zirconia, silicon nitride, silicon carbide, tungsten carbide-6 weight % cobalt and iron-2 weight % nickel, to establish- whether injection moulding is feasible. Optimum properties such as powder volume loadings, mixing, moulding, demoulding, moulded densities, debinding and some sintered density results showed that these new binder systems can also be used successfully for the injection moulding of other ceramic and metallic powders, although a fuller evaluation of the properties such as optimum sintered densities and mechanical properties is required.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:324334 |
Date | January 1992 |
Creators | Youseffi, M. |
Publisher | Loughborough University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://dspace.lboro.ac.uk/2134/7227 |
Page generated in 0.0021 seconds