The equilibrium diagrams are the starting point and the guideline to predict and control the microstructure that will form during processing materials. Despite experiments being necessary in binaries and ternaries systems, it is difficult to experimentally determine phase diagrams of higher orders systems over wide ranges of compositions and temperature. The CALPHAD (CALculation of PHAse Diagrams) method was developed in order to solve this problem. The essence is to optimize the parameters of thermodynamic models that describe the Gibbs free energies of each phase aiming to reproduce the experimental and estimated (abinitio) data. The compound energy formalism (CEF) is widely used in order to describe phases which present several sublattices. It allows the modeling of a large variety of phases and numerous methods have been developed to treat different situations. The activities in this work developed a new approach of the CEF (NACEF) based on a mathematic analysis of the parameters which leads to a new formulation of the Gibbs free energy function evolving new independent parameters in which new independent parameters are obtained to express the Gibbs free energy. This approach was used in this work to describe the intermetallic phases with two-sublattice in which the only defect type is anti-sites (A,B)a(A,B)b. The Al-Fe-Nb system was chosen due to its importance for the manufacturing process of several families of alloys currently used, e.g. steels, light alloys, and also for the development of new materials for high temperatures application. The binaries Al-Nb and Fe-Nb were reassessed and the Al-Fe-Nb system was assessed for the first time using literature information and new experimental data. / Os diagramas de equilíbrio são o ponto de partida e a diretriz para prever e controlar a microestrutura ao final do processamento de um material. Apesar de experimentos serem necessários em sistemas binários e ternários, é muito difícil determinar experimentalmente diagramas de fase de sistemas de ordens superiores numa vasta amplitude de composições e temperatura. A fim de solucionar este problema, o método CALPHAD (CALculation of PHAse Diagrams) foi desenvolvido. A essência consiste em aperfeiçoar os parâmetros de modelos termodinâmicos que descrevem as energias livres de Gibbs de cada fase de modo a reproduzir as informações experimentais ou estimadas (ab-initio). O compound energy formalism (CEF) é amplamente utilizado para descrever fases que apresentam várias sub-redes. Ele permite a modelagem de uma grande variedade de fases e vários métodos têm sido desenvolvidos para o tratamento de diferentes situações. As atividades deste trabalho ajudaram a desenvolver uma nova abordagem para o CEF (NACEF) com base em um estudo matemático dos seus parâmetros termodinâmicos que levou a uma nova formulação para função da energia livre de Gibbs envolvendo novos parâmetros independentes. Esta nova abordagem tem sido utilizado como parte do presente trabalho para modelar fases intermetálicas binárias constituídas de sub-redes cujo único defeito é do tipo anti-sítio (A,B)a(A,B)b. O sistema Al-Fe-Nb foi escolhido devido a sua importância para o processo de fabricação de diversas famílias de ligas usadas atualmente, e.g. aços, ligas leves e, além disto, é um sistema importante para o desenvolvimento de materiais para aplicações em altas temperaturas. Neste trabalho os binários Al-Nb e Fe-Nb foram reavaliados e o sistema Al-Fe-Nb foi modelado pela primeira vez utilizando as informações da literatura e novos dados experimentais.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-21102015-141946 |
Date | 24 August 2015 |
Creators | Silva, Antonio Augusto Araujo Pinto da |
Contributors | Coelho, Gilberto Carvalho |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Reter o conteúdo por motivos de patente, publicação e/ou direitos autoriais. |
Page generated in 0.002 seconds