As porfirinas e seus derivados têm sido, ao longo dos anos, alvos de vários campos diferentes de interesse, obtendo diversas aplicações, as quais tem aumentado constantemente com o decorrer dos anos. Dentre suas aplicações, uma das mais importantes se encontra no campo da Medicina moderna, sendo a principal na área de detecção e extirpação de tecidos modificados, a partir da Terapia Fotodinâmica (do termo inglês Photodynamic Therapy PDT), apresentando resultados promissores. Em diversos processos biológicos, as porfirinas podem existir na forma monomérica ou na forma agregada. Entretanto, a agregação de porfirinas reduz sua eficiência nas aplicações em PDT devido a redução dos tempos de vida e rendimentos quânticos de produção dos estados excitados singleto e tripleto e levando, conseqüentemente, a redução na produção de oxigênio singleto. Diversos fatores influenciam o processo de agregação das porfirinas. Dentre eles, a interação eletrostática exerce um importante papel. A modulação dessa interação pode tanto estimular a agregação, quanto diminuir a probabilidade de formação dos agregados. Deste modo, condições externas, tais como pH, força iônica e especialmente a interação com sistemas microheterogêneos podem modificar essa interação e influenciar também nas características de agregação. Neste trabalho buscamos avaliar, através de diversos métodos espectroscópicos, os efeitos da interação das porfirinas meso-tetrakis (p-sulfonatofenil) porfirina (TPPS4), aniônica, e meso-tetrakis (4-N-metilpiridil) porfirina (TMPyP), catiônica, com sistemas microheterogêneos naturais e sintéticos (células ghost" de eritrócitos e micelas) em função da sua própria estrutura, da estrutura destes sistemas e de fatores externos (concentração, pH, força iônica). O interesse principal foi dedicado aos efeitos dessa interação na formação de agregados das porfirinas. Foram analisadas as mudanças nas características fotofísicas e fotoquímicas destes compostos, tais como espectros de absorção, rendimentos quânticos e tempos de vida dos estados excitados singleto e tripleto, produção de oxigênio singleto, etc, visando obter informações sobre o comportamento coletivo dessas porfirinas, o que é muito importante para as suas possíveis aplicações em medicina, em particular na Terapia Fotodinâmica do câncer. Foi descoberto que a interação da porfirina aniônica TPPS4 com micelas de carga oposta ou na presença de alta força iônica em pH < pKa estimula a formação seqüencial de dois tipos de agregados: inicialmente são formados agregados H que após certo período se transformam em agregados J. A formação desses agregados altera os espectros de absorção, rendimentos quânticos e tempos de vida dos estados excitados singleto e tripleto e produção de oxigênio singleto. Foi observado que a interação com porfirinas altera a c.m.c dos tensoativos, reduzindo em até três ordens de grandeza o valor da c.m.c dos tensoativos de carga oposta à das porfirinas. Associamos esta c.m.c com a formação de micelas mistas porfirina+tensoativo. Foi também observado que a adição de NaCl no sistema porfirina+micelas ou porfirina+células ghost facilita a penetração da porfirina no interior da micela ou membrana, diminuindo assim a probabilidade de contato entre as porfirinas e o oxigênio, reduzindo a constante bimolecular de supressão do estado tripleto da porfirina pelo O2. A fim de avaliar a influência da estrutura dos fotossensibilizadores (FS) na sua fototoxicidade, comparamos o efeito fototóxico de ambas porfirinas e dois corantes bisciânicos em células de linhagem neoplásica HT29. Os resultados foram analisados levando em consideração as características de ligação dos FS, sua penetração e localização nas células HT29. A fototividade de ambas porfirinas em cultura celular demonstrou ser independente do tipo de suas cargas, apresentado um perfil de toxicidade muito similar. Os BCDs apresentaram uma elevada toxicidade em comparação com a das porfirinas. Observamos que as porfirinas e os BCDs possuem uma cinética de acumulação muito similar e períodos de ligação muito próximos (2h). Entretanto, o tempo e o local de internalização parecem ser dependentes tanto da estrutura quanto da carga do FS. Assim, os BCDs se internalizaram após apenas 2 horas e se localizaram preferencialmente nas mitocôndrias. Por outro lado, a TPPS4 localiza-se principalmente nos lisossomos enquanto que a TMPyP parece estar localizada na membrana celular, ambas com um tempo de internalização de 24 horas. Estes resultados podem explicar a elevada fototoxicidade dos BCDs observada em nossos experimentos. / During several decades the porphyrins and their derivatives continue of interest in different areas including various applications, the number of which is increasing with time. One of their most important applications is in modern medicine to detect and extirpate modified tissues, the photodynamic therapy (PDT) being the principle area, which demonstrates promising results. Taking part of various biological processes, the porphyrins may exist as monomers or aggregates. However, aggregation reduces their efficacy in PDT as it shortens their lifetimes and quantum yields of excited singlet and triplet states, thus reducing the production of singlet oxygen. There exist various factors, which may modify aggregation of the porphyrins, the electrostatic interaction being very important. Modulation of this interaction can stimulate aggregation or reduce the probability of the aggregate formation. So external conditions such as pH, ionic strength and interaction with microheterogeneous systems can modify this interaction and thus affect the aggregation characteristics. In this work we present the results received with the help of various spectroscopic techniques on interaction of anionic meso-tetrakis (p-sulfonatophenyl) (TPPS4) and cationic meso-tetrakis (4-N-methyl-pyrydiumil) (TMPyP) porphyrins with natural and synthetic microheterogeneous systems (ghost" erythrocyte membranes and micelles) in function of their proper structure, the structure of these systems and the external factors (concentration, pH, ionic strength). The principle attention was paid to the effects of this interaction on aggregation of the porphyrins. We analyzed variations in the porphyrin photophysical and photochemical characteristics such as absorption spectra, quantum yields and lifetimes of excited singlet and triplet states, singlet oxygen production, etc., to look for the regularities in their collective behavior which is very important at their possible application in medicine, in PDT of cancer, in particular. We found that the interaction of the anionic porphyrin TPPS4 with micelles of the opposite charge or in the presence of high ionic strength at pH<pKa stimulated sequential formation of two types of aggregates: at the beginning H aggregates were formed which transformed with time in J type. Formation of the aggregates modified the porphyrin absorption spectra, their lifetimes and quantum yields of excited singlet and triplet states and the production of singlet oxygen, as well. We observed that the interaction with porphyrins reduced up to three orders of magnitude the c.m.c. values for surfactants with the charge opposite to that of the porphyrin. We attribute these reduced c.m.c. values to formation of mixed micelles (surfactant + porphyrin). We observed that in the presence of NaCl in the systems (porphyrin + micelle) or (porphyrin + ghost" cells) the dye penetrated more easily the interior of the micelle or the membrane, reducing the probability of its contact with oxygen, and, hence, reducing the bimolecular constant of triplet suppression by O2. To evaluate the influence of the structure of photosensitizers (PS) on their phototoxicity we compared phototoxic effects of both porphyrins and two biscyanine dyes upon the neoplasic cells line HT29. The results were analyzed taking into account the characteristics of photosensitizer binding, penetration and localization in cells. The photoefficacy of both porphyrins was demonstrated independent of the type of their charge, their phototoxicities being very close. The BCDs demonstrated the elevated phototoxicity as compared with that of porphyrins. We observed that both porphyrins and BCDs possessed very close accumulation kinetics and their binding periods were similar (2 h). Nevertheless, the time of the PS entrance to the cell and their intracellular localization were shown to depend on their structure and charge. So, the BCDs entered the cell in two hours and were localized preferably in mitochondrias. The TPPS4 localized in lysosomes, while TMPyP seemed to prefer the cell membrane, the time of entrance for both being close to 24 hours. These results may explain higher BCDs phototoxicity observed in the experiments.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-02062005-101952 |
Date | 11 March 2005 |
Creators | Aggarwal, Lucimara Perpétua Ferreira |
Contributors | Borissevitch, Iouri |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0036 seconds