Submitted by Alison Vanceto (alison-vanceto@hotmail.com) on 2016-10-05T14:14:54Z
No. of bitstreams: 1
TeseRSV.pdf: 1391601 bytes, checksum: fb3e58d9db6c377161785dede432eeee (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-10-05T19:33:46Z (GMT) No. of bitstreams: 1
TeseRSV.pdf: 1391601 bytes, checksum: fb3e58d9db6c377161785dede432eeee (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-10-05T19:34:21Z (GMT) No. of bitstreams: 1
TeseRSV.pdf: 1391601 bytes, checksum: fb3e58d9db6c377161785dede432eeee (MD5) / Made available in DSpace on 2016-10-07T18:13:48Z (GMT). No. of bitstreams: 1
TeseRSV.pdf: 1391601 bytes, checksum: fb3e58d9db6c377161785dede432eeee (MD5)
Previous issue date: 2015-05-15 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / In this dissertation we made an analytic study of the Bethe Ansatz equations for the XXZ six vertex model with periodic boundary conditions. We had show that the Bethe Ansatz equations deduced from the algebraic and coordinate Bethe Ansatze are related by a conformal map. This allowed us to reduce the Bethe Ansatz equations to a system of polynomial equations. For the one, two and three magnon sectors, we succeeded in decouple these equations, so that the solutions could be expressed in terms of the roots of some self-inversive polynomials, Pa (z). Through new theorems deduced here about the distribution of the roots of self-inversive polynomials in the complex plane, we did a thorough analysis of the distribution of the Bethe roots for the two-magnon sector. This analysis allowed us to show that the Bethe Ansatz is indeed complete for this sector, except at some critical values of the anisotropy parameter A, in which the polynomials Pa (z) may have multiple roots. Finally, an unexpected connection between the Bethe Ansatz equations and the Salem polynomials was found and a new algorithm for search small Salem numbers was elaborated. / Nesta tese fizemos um estudo analítico das equações de Bethe para o modelo de seis vértices XXZ com condições de contorno periódicas. Mostramos que as equações de Bethe deduzidas pelo Ansatz algébrico estão relacionadas com as equações de Bethe do Ansatz de coordenadas por uma transformação conforme. Isso nos permitiu reduzir as equações de Bethe a um sistema de equações polinomiais. Para os setores de um, dois e três mágnons, mostramos que essas equações podem ser desacopladas, de modo que as suas soluções podem ser expressas em termos das raízes de certos polinómios auto-inversivos, Pa(z). Deduzimos aqui novos teoremas acerca da distribuição das raízes dos polinómios auto-inversivos no plano complexo, o que nos permitiu fazer uma análise minuciosa da distribuição das raízes de Bethe para o setor de dois mágnons. Esta análise nos permitiu mostrar que o Ansatz de Bethe é de fato completo para este setor, exceto para alguns valores críticos do parâmetro de anisotropia A, no qual os polinómios Pa(z) podem apresentar raízes múltiplas. Por fim, uma inesperada conexão entre as equações de Bethe e os polinómios de Salem foi encontrada e um novo algoritmo para se procurar por números de Salem pequenos foi elaborado.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/7711 |
Date | 15 May 2015 |
Creators | Vieira, Ricardo Soares |
Contributors | Santos, Antonio Lima |
Publisher | Universidade Federal de São Carlos, Câmpus São Carlos, Programa de Pós-graduação em Física, UFSCar |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds