Skeletal muscle atrophy is a common, debilitating consequence of muscle disuse, malnutrition, critical illness, musculoskeletal conditions, neurological disease, cancer, and organ failure. Despite its prevalence, little is known about the molecular pathogenesis of this devastating condition due in large part to an incomplete understanding of the molecular mechanisms that drive the atrophy process. In previous studies, we identified the transcription factor ATF4 as a critical mediator of skeletal muscle atrophy. We found that ATF4 is necessary and sufficient for skeletal muscle atrophy during limb immobilization. However, ATF4 mKO mice were only partially protected from skeletal muscle atrophy during limb immobilization, indicating the existence of another pro-atrophy factor that acts independently of the ATF4 pathway. Using mouse models, we identify p53 as this ATF4-independent factor. We show that skeletal muscle atrophy increases p53 expression in skeletal muscle fibers. In addition, overexpression of p53 causes skeletal muscle atrophy. Further, p53 mKO mice are partially resistant to muscle atrophy during limb immobilization. Taken together, these data indicate that like ATF4, p53 is sufficient and required for skeletal muscle atrophy during limb immobilization. Importantly, overexpression of p53 induces muscle atrophy in the absence of ATF4, whereas ATF4-mediated muscle atrophy does not require p53. Furthermore, overexpression of p53 and ATF4 induces greater muscle atrophy than p53 or ATF4 alone. Moreover, skeletal muscle lacking both p53 and ATF4 is more resistant to skeletal muscle atrophy than muscle lacking either p53 or ATF4 alone. Taken together, these data indicate that p53 and ATF4 mediate distinct and additive mechanisms to skeletal muscle atrophy. However, the precise mechanism by which p53 and ATF4 cause skeletal muscle atrophy remained unclear. Using genome-wide expression arrays, we identify p21 as a skeletal muscle mRNA that is highly induced by p53 and ATF4 during limb immobilization. Further, overexpression of p21 causes skeletal muscle atrophy. In addition, p21 is required for muscle atrophy due to limb immobilization, p53, and ATF4. Collectively, these results identify p53 and ATF4 as critical and complementary mediators of skeletal muscle atrophy during limb immobilization, and discover p21 as an essential downstream mediator of the p53 and ATF4 pathways.
Identifer | oai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-6430 |
Date | 01 May 2016 |
Creators | Fox, Daniel Kenneth |
Contributors | Adams, Christopher M., 1970- |
Publisher | University of Iowa |
Source Sets | University of Iowa |
Language | English |
Detected Language | English |
Type | dissertation |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | Copyright 2016 Daniel Fox |
Page generated in 0.0088 seconds