In the last fifteen years, a great deal of effort has been put forth, worldwide, for investigating and enhancing various aspects of optical coherence tomography (OCT). This thesis begins with a description of the technique of OCT, and an analysis of its underlying theory. The design and construction of an OCT system is described, with particular emphasis on a novel delay scanning method, and novel signal processing. Application of OCT to non-destructive characterisation of seeds, examination of skin lesions, measurement of fluid flow, and refractive index determination, are then demonstrated. Two technological enhancements to OCT are presented in this thesis. The first, an extended-range Fourier domain optical delay line (FDODL), extends the scan range of the traditional FDODL by a factor of almost 9, by scanning the galvanometer mirror around the region of zero tilt-angle. Polarisation optics are used to prevent light coupling back into the interferometer after only a single pass through the FDODL. A non-coplanar version of the FDODL is also presented, which overcomes the losses associated with the polarisation-based design, but trades off scan range to do so. Both versions of FDODL demonstrated excellent linearity and scan uniformity. The second technology presented here, bifocal optical coherence refractometry (BOCR), affords OCT the ability to measure refractive indices within turbid media. It achieves this by generating two confocal gates within the sample. From knowledge of the system parameters, and measurements of the confocal gate separation, the refractive index within the medium is evaluated to within ±0.01. Refractive index mapping is then demonstrated in a number of turbid samples. Three other applications of OCT are also demonstrated in this thesis. The first is the use of OCT to measure full thickness in lupin seeds. Although OCT could not penetrate the entire thickness of the hull, it is demonstrated that the variation in thickness of the two layers observed with OCT, explained 81% of the variation in thickness of the entire hull measured under a SEM. OCT was then applied, for what is believed to be the first time, in a large scale seed screening program. The second application is a preliminary investigation of the suitability of OCT to aid in the diagnosis of skin lesions. Although our system did not possess sufficient positioning accuracy to enable a direct one-to-one comparison between OCT and histology, a number of correspondences between OCT and histology images were demonstrated. The final application of OCT demonstrated here is a novel phase-locked-loop based demodulation scheme, to perform Doppler OCT. This demodulation scheme demonstrated a dynamic range of 98dB, a velocity range of ±20mm/s, and velocity resolution of 0.5mm/s. Using this system, laminar flow was demonstrated in milk flowing through a capillary tube.
Identifer | oai:union.ndltd.org:ADTP/221125 |
Date | January 2004 |
Creators | Silva, K.K.M. Buddhika Dilusha |
Publisher | University of Western Australia. School of Electrical, Electronic and Computer Engineering |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright K.K.M. Buddhika Dilusha Silva, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html |
Page generated in 0.0021 seconds