Synchronization of two identical chaotic systems with matched and mismatched perturbations by utilizing adaptive sliding mode control (ASMC) technique is presented in this thesis. The sliding surface function is designed based on Lyapunov stability theorem and linear matrix inequality (LMI) optimization technique. Adaptive mechanisms embedded in the proposed control scheme are used to adapt the unknown upper bounds of the perturbations. The designed tracking controller can not only suppress the mismatched perturbations when the controlled dynamics (master-slave) are in the sliding mode, but also drive the trajectories of synchronization errors into a small bounded region whose size can be adjusted through the designed parameters. The stability of overall controlled synchronization systems is guaranteed. Application of proposed chaotic synchronization technique to secure communication as well as several numerical examples are given to demonstrate the feasibility of the proposed design technique.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0831110-223641 |
Date | 31 August 2010 |
Creators | Wu, Shiue-Wei |
Contributors | Yeong-Jeu Sun, Chih-Chiang Cheng, Li Lee |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0831110-223641 |
Rights | not_available, Copyright information available at source archive |
Page generated in 0.0017 seconds