Return to search

Hybrid silica gels and xerogels: from precursor molecules to porous materials via phase separation and drying

The present work analyses the physicochemical phenomena responsible for the microstructure of Pd/SiO2 xerogel catalysts and of metal-free hybrid SiO2 xerogels synthesized by sol-gel process. The samples are synthesized by co-polymerizing tetraethoxysilane (TEOS) with 3-aminopropyltriethoxysilane or 3-(2-aminoethylamino)propyltrimethoxysilane in ethanol, the latter co-reactant possibly forming a complex with palladium. The analysis is conducted by following in situ the formation of the gels' nanostructure by Small-Angle X-ray Scattering (SAXS), by characterizing the microstructure of the final gels by beam-bending, and by analyzing the microstructure of the xerogels after desiccation, most notably by electron tomography.
The in situ SAXS analysis shows that the nanometer structure of the gels forms via a reaction-induced phase separation.
The microstructure of the hybrid xerogels is hierarchical, as assessed by electron microscopy, nitrogen adsorption and SAXS. Its structure is that of a microcellular foam at large scale, with pores a few hundred nanometers across, supported by elongated filaments, a few ten nanometers wide, each filament being made up by smaller structures, a few nanometers wide. The characteristics of the various structural levels depend on the nature and concentration of the co-reactant used. In the case of xerogel catalysts, electron tomography shows that Pd nanoparticles are regularly dispersed inside the silica, with distances between them comparable to the thickness of the skeleton.
On the basis of the time-resolved SAXS and of the characterization of the xerogels, it is argued that a double phase separation process is responsible for the structuring of the gels, with a primary phase separation leading to the microcellular foam morphology, and a secondary phase separation being responsible for the substructure of the filaments.
The large scale structure of the gels themselves, before desiccation, is analyzed by beam bending. This enables one to estimate the mechanical properties of the gels as well as the size of their largest pores. The microstructure of aerogels obtained by supercritical drying of the samples is also investigated. The comparison of the characterization data show that the nature and concentration of the co-reactant controls the amount of shrinkage that the gels undergo during desiccation, at the macroscopic scale as well as at the scale of the filaments.

Identiferoai:union.ndltd.org:BICfB/oai:ETDULg:ULgetd-03232011-082214
Date08 May 2006
CreatorsGommes, Cédric
ContributorsScherer, George W., Kelchtermans, Mauritz, Leyh, Bernard, Goderis, Bart, Cloots, Rudy, Blacher, Silvia, Lecloux, Andre, Pirard, Jean-Paul, Crine, Michel, L'HOMME, Guy
PublisherUniversite de Liege
Source SetsBibliothèque interuniversitaire de la Communauté française de Belgique
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://bictel.ulg.ac.be/ETD-db/collection/available/ULgetd-03232011-082214/
Rightsunrestricted, Je certifie avoir complété et signé le contrat BICTEL/e remis par le gestionnaire facultaire.

Page generated in 0.0014 seconds