Over the past years, small RNAs (smRNAs) have been identified as important molecular regulators of gene expression and specifically eukaryotic messenger RNAs (mRNAs). Small RNAs including small-interfering RNAs (siRNAs) and microRNAs (miRNAs) take part in the RNA silencing pathway and regulate various pathways in the cell including transcription, genome integrity, chromatin structure, mRNA stability, and translation. siRNAs are usually from exogenously derived molecules, while miRNAs are expressed endogenously by the genome. The RNA silencing pathway is highly conserved between organisms and plays a critical part in maintaining homeostasis, host-pathogen interaction, and disease progression. Thus, a better understanding of the RNA silencing pathway and probing of the molecules involved in the process is instrumental in developing tools that can better regulate the expression of specific genes.
The viral suppressor of RNA silencing (VSRS) p19, is a 19 kDa protein that is expressed by tombusviruses and exhibits the highest reported affinity to small RNAs, including siRNA and miRNA. Further engineering of this protein acts as an interesting means to control the RNA silencing pathway and provides a platform to design novel tools to further modulate the activity of smRNAs in living systems.
The ability to incorporate new and useful chemical functionality into proteins within living organisms has been greatly enhanced by technologies that expand the genetic code. These usually involve bioorthogonal transfer RNA (tRNA) /aminoacyl-tRNA synthetase (aaRS) pairs that can selectively incorporate an unnatural amino acid (UAA) site specifically into ribosomally synthesized proteins. Site-specificity is coded for by using a rare codon such as the amber stop codon. In Chapter 2, we demonstrate the engineering of p19 for the development of a Förster resonance energy transfer (FRET) reporter system for the visualization of RNA delivery and release in cells using UAAs and bioorthogonal click chemistry, which was done by incorporating azidophenylalanine (AzF). In Chapter 3, by incorporating UAAs into p19’s binding pocket, we were able to enhance its smRNA suppressing activity by covalently trapping the bound substrates. We have demonstrated the engineering of a molecular switch that contains photo-crosslinking groups that covalently trap smRNAs. In Chapter 4, incorporating a metal-ion chelating UAA (2,2′-bipyridin-5-yl) alanine (BpyAla) into p19’s binding pocket has successfully led to site-specific cleavage of small RNAs including siRNAs and endogenous miRNAs. The genetic introduction of BpyAla provides a unique method of introducing catalytic activity into proteins of interest. The developed unnatural enzyme provides a new tool for catalytic suppression of the RNA silencing pathway. These results demonstrate the power of adding new chemistries to proteins using UAAs to achieve possible, diverse applications in therapy and biotechnology.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/44506 |
Date | 13 January 2023 |
Creators | Ahmed, Noreen |
Contributors | Pezacki, John |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.002 seconds