Return to search

Metodologia para previsão de carga de curtíssimo prazo considerando variáveis climáticas e auxiliando na programação de despacho de pequenas centrais hidrelétricas

Submitted by Sandro Camargo (sandro.camargo@unipampa.edu.br) on 2015-05-09T18:11:33Z
No. of bitstreams: 1
107110004.pdf: 2957226 bytes, checksum: b15ec66f6abfaa78dc10c29127881a4b (MD5) / Made available in DSpace on 2015-05-09T18:11:33Z (GMT). No. of bitstreams: 1
107110004.pdf: 2957226 bytes, checksum: b15ec66f6abfaa78dc10c29127881a4b (MD5)
Previous issue date: 2012-06-29 / A previsão de carga é uma atividade de grande importância no Setor Elétrico, tendo em vista que a maioria dos estudos de planejamento e operação dos sistemas elétricos necessita de uma boa estimativa da carga a ser atendida. Na literatura encontram-se diversas metodologias para projeção de carga elétrica nos distintos horizontes de planejamento, porém limitadas a sistemas elétricos de médio e grande porte e poucas são as propostas de projeção de demanda no horizonte de curtíssimo prazo, principalmente para pequenas empresas do Setor Elétrico. O objetivo deste trabalho é apresentar uma metodologia inovadora de previsão de carga, a curtíssimo prazo, que considere as influências das condições climáticas e que possa auxiliar na programação do regime de operação de uma Pequena Central Hidrelétrica (PCH), principalmente em épocas de estiagem, quando a disponibilidade de água é restrita. A metodologia proposta envolve a criação de um modelo probabilístico discreto (cadeia de Markov) a partir da classificação dos dados históricos em um Mapa Auto-Organizável (SOM). Assim, é possível se estimar a probabilidade de um determinado nível de demanda acontecer dada uma condição climática atual, bem como o número de intervalos de tempo (horas) até que isso aconteça. Com estas informações é possível elaborar a melhor agenda de funcionamento da PCH de forma que a mesma esteja em funcionamento nos momentos em que a demanda atingir os valores máximos.
O método proposto apresenta como diferencial em relação aos demais métodos existentes o fato de considerar a influência das variáveis climáticas
(temperatura, umidade relativa do ar e velocidade do vento) para a previsão de demanda de energia elétrica no curtíssimo prazo, além de que os valores de entrada de demanda de energia e das variáveis climáticas (temperatura e umidade relativa do ar) são obtidos em tempo real, através de um sistema SCADA. Esta metodologia foi aplicada utilizando-se os dados reais de uma pequena concessionária de distribuição de energia elétrica do Rio Grande do Sul, mostrando resultados satisfatórios, suficientes para permitir a sua aplicação prática. / The electrical charge forecast is an activity of great importance in the Electricity Sector, considering that most studies of electrical systems planning and operation require a good estimative of the charge to be fulfilled. In books, there are various methodologies to have the electrical charge projection in different planning horizons, but limited to medium and large electrical systems. Furthermore, there are only a few demand projection proposals in the very short-term horizon, especially for small Electricity Sector companies. The aim of this paper is to present an innovative methodology in order to have the charge forecast, in a very short-term, which considers the climatic conditions influence and is able to assist the operation system programming of a Small Hydroelectric Power Plant, particularly in times of drought when water availability is restricted. The proposed methodology involves creating a discrete probabilistic pattern (Markov chain) from the historical data classification in a Self-Organizing Map (SOM). It is therefore possible to estimate the probability of reaching a certain demand level, taking the current climatic condition, as well as the periods of time (hours) until it happens. With this information it is possible to develop the best plant operation schedule so that it operates when the demand reaches its maximum numbers. The proposed method presents as differentials upon the other existing methods, the fact of considering the climatic variables influence (temperature, air humidity and wind speed) to forecast electricity demand in the very short-term, as well as the energy demand input values and climate variables obtainment (temperature and air humidity) in real time via a SCADA system. This methodology was applied using real data from a small electricity distribution plant in Rio Grande do Sul, showing satisfactory results, enough to allow their practical application.

Identiferoai:union.ndltd.org:IBICT/oai:10.1.0.46:riu/241
Date29 June 2012
CreatorsBordignon, Sérgio
ContributorsSperandio, Maurício, Bernardon, Daniel Pinheiro
PublisherUniversidade Federal do Pampa, Campus Bagé
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UNIPAMPA, instname:Universidade Federal do Pampa, instacron:UNIPAMPA
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds