This thesis provides an introduction to methods for handling missing data. A thorough review of earlier methods and the development of the field of missing data is provided. The thesis present the methods suggested in today’s literature, multiple imputation and maximum likelihood estimation. A simulation study is performed to see if there are circumstances in small samples when any of the two methods are to be preferred. To show the importance of handling missing data, multiple imputation and maximum likelihood are compared to listwise deletion. The results from the simulation study does not show any crucial differences between multiple imputation and maximum likelihood when it comes to point estimates. Some differences are seen in the estimation of the confidence intervals, talking in favour of multiple imputation. The difference is decreasing with an increasing sample size and more studies are needed to draw definite conclusions. Further, the results shows that listwise deletion lead to biased estimations under a missing at random mechanism. The methods are also applied to a real dataset, the Swedish enrollment registry, to show how the methods work in a practical application.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-413984 |
Date | January 2020 |
Creators | Österlund, Vilgot |
Publisher | Uppsala universitet, Statistiska institutionen |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0017 seconds