[pt] Redes de Bragg em fibras ópticas (RBF) são formadas por
modulações periódicas
introduzidas no índice de refração do núcleo de fibras
ópticas. Estes componentes
comportam-se como filtros espectrais de banda passante, ou
seja, quando iluminados por
um sinal óptico de banda larga, refletem apenas uma fina
fatia espectral de luz, cujo
centro, o comprimento de onda de Bragg, é proporcional ao
período espacial da
modulação no índice de refração. As RBF têm encontrado
aplicações importantes no
sensoriamento das mais diversas grandezas, sendo hoje
utilizadas em sistemas de
monitoramento para vários segmentos industriais, tais como
os setores de petróleo e gás,
construção civil e aeroespacial, que, estima-se, respondem
em conjunto por cerca de 70%
destas aplicações. Em diversas situações o sensoriamento
com RBF baseia-se em
medidas indiretas da grandeza de interesse, sendo
empregados mecanismos de
transdução que transformam variações do mensurando em
deformações na fibra óptica.
Nestes casos, um problema que deve ser tratado com atenção
é o acoplamento entre
temperatura e deformação, uma vez que as RBF são sensíveis
a estas duas variáveis. Não
raro, a alternativa é utilizar simultaneamente duas RBF
para obter-se a compensação de
temperatura na medida de deformação.
Este trabalho apresenta um estudo sobre deformações não
homogêneas em redes de
Bragg e discute aplicações de duas técnicas que podem ser
utilizadas como alternativas
para eliminar o efeito da temperatura no sensoriamento de
deformação com apenas uma
RBF. A primeira delas explora a birrefringência óptica
induzida na RBF por
carregamentos transversais à fibra óptica. A segunda
baseia-se nos efeitos sobre o
espectro refletido pela rede de Bragg quando submetida a
um campo de deformações
longitudinais não uniformes ao longo da direção axial da
fibra óptica. No trabalho são
apresentados protótipos e dispositivos que exploram tais
técnicas para a medida simultânea de pressão e
temperatura. Esses protótipos foram projetados com auxílio
de
ferramentas CAD e modelados utilizando-se o método de
elementos finitos em conjunto
com a teoria de modos acoplados da Rede de Bragg. As
previsões obtidas utilizando-se
estes modelos mostraram-se bastante próximas dos
resultados das implementações
experimentais dos protótipos, indicando que a metodologia
de modelagem desenvolvida
pode ser aplicada nos projetos de transdutores baseados
nas duas técnicas estudadas. / [en] Fiber Bragg gratings (FBG) are modulations in the
effective refractive index of
optical fibers, introduced in a small length along the
fiber core. Such components operate
as narrow band reflective filters, that is, when
illuminated by a broad-band light source,
they reflect a narrow spectral band centered at a specific
wavelength, the Bragg
wavelength. This wavelength is proportional to the spatial
period of the refractive index
modulation. Fiber Bragg gratings have find an increasing
number of applications as
sensors for different quantities, and today are being
employed as part of permanent, real
time monitoring systems in various industrial segments.
The oil and gas sector, together
with civil infrastructure and aeronautics and aerospace,
account for almost 70% of this
applications. In a number of situations, FBG sensing is
based on indirect measurements
of the quantity being monitored, and a transduction
mechanism is employed to transform
changes in the measured quantity in strain sensed by the
optical fiber. Since the FBG is
sensitive to strain and temperature, proper temperature
compensation is always
necessary. Usually, a second grating is employed to
simultaneously measure temperature
and strain, performing the required compensation.
This thesis presents a study on effects due to non-
homogeneous strains in the
Bragg grating and discusses application of two different
techniques, based on these
effects, to allow temperature compensated strain
measurement using a single FBG. The
first technique explores strain induced optical
birefringence when the fiber is loaded
transversely. The second technique is based on changes in
the spectral shape of the light
signal reflected by the grating when subjected to non
homogeneous axial strain fields.
Prototypes of pressure and temperature transducers based
on these techniques have been
developed. These prototypes have been designed by
employing CAD techniques and
modeled using the finite element method in conjunction
with the theory of coupled
modes for fiber Bragg gratings. Comparisons between
results provided by theoretical models and experimental
realizations of the prototypes are very close,
demonstrating that
the developed approach can be applied to design
transducers based on the discussed
techniques. Results obtained with the proposed pressure
and temperature sensors are also
encouraging indicating that the two techniques are
suitable for industrial applications.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:7099 |
Date | 21 September 2005 |
Creators | ADRIANO FERNANDES PINHO |
Contributors | ARTHUR MARTINS BARBOSA BRAGA, ARTHUR MARTINS BARBOSA BRAGA |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | Portuguese |
Detected Language | Portuguese |
Type | TEXTO |
Page generated in 0.0028 seconds