In this dissertation a class of stochastic differential equations is considered in the limit as mass tends to zero, called the Smoluchowski-Kramers limit. The Smoluchowski-Kramers approximation is useful in simplifying the dynamics of a system. For example, the problems of calculating of rates of chemical reactions, describing dynamics of complex systems with noise, and measuring ultra small forces, are simplified using the Smoluchowski-Kramers approximation. In this study, we prove strong convergence in the small mass limit for a multi-dimensional system with arbitrary state-dependent friction and noise coefficients. The main result is proved using a theory of convergence of stochastic integrals developed by Kurtz and Protter. The framework of the main theorem is sufficiently arbitrary to include systems of stochastic differential equations driven by both white and Ornstein-Uhlenbeck colored noises.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/293564 |
Date | January 2013 |
Creators | Hottovy, Scott |
Contributors | Wehr, Jan, Watkins, Joseph, Kennedy, Thomas, Sethuraman, Sunder, Wehr, Jan |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | text, Electronic Dissertation |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0019 seconds