This thesis focuses on development of spline-based hazard estimation models for cure rate data. Such data can be found in survival studies with long term survivors. Consequently, the population consists of the susceptible and non-susceptible sub-populations with the latter termed as "cured". The modeling of both the cure probability and the hazard function of the susceptible sub-population is of practical interest. Here we propose two smoothing-splines based models falling respectively into the popular classes of two component mixture cure rate models and promotion time cure rate models.
Under the framework of two component mixture cure rate model, Wang, Du and Liang (2012) have developed a nonparametric model where the covariate effects on both the cure probability and the hazard component are estimated by smoothing splines. Our first development falls under the same framework but estimates the hazard component based on the accelerated failure time model, instead of the proportional hazards model in Wang, Du and Liang (2012). Our new model has better interpretation in practice.
The promotion time cure rate model, motivated from a simplified biological interpretation of cancer metastasis, was first proposed only a few decades ago. Nonetheless, it has quickly become a competitor to the mixture models. Our second development aims to provide a nonparametric alternative to the existing parametric or semiparametric promotion time models. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/52894 |
Date | 02 June 2015 |
Creators | Chen, Tianlei |
Contributors | Statistics, Du, Pang, Hong, Yili, Terrell, George R., Kim, Inyoung |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0022 seconds