The dissertation thesis deals with 3D reconstruction of the temporomandibular joint from 2D slices of tissue obtained by magnetic resonance. The current practice uses 2D MRI slices in diagnosing. 3D models have many advantages for the diagnosis, which are based on the knowledge of spatial information. Contemporary medicine uses 3D models of tissues, but with the temporomandibular joint tissues there is a problem with segmenting the articular disc. This small tissue, which has a low contrast and very similar statistical characteristics to its neighborhood, is very complicated to segment. For the segmentation of the articular disk new methods were developed based on the knowledge of the anatomy of the joint area of the disk and on the genetic-algorithm-based statistics. A set of 2D slices has different resolutions in the x-, y- and z-axes. An up-sampling algorithm, which seeks to preserve the shape properties of the tissue was developed to unify the resolutions in the axes. In the last phase of creating 3D models standard methods were used, but these methods for smoothing and decimating have different settings (number of polygons in the model, the number of iterations of the algorithm). As the aim of this thesis is to obtain the most precise model possible of the real tissue, it was necessary to establish an objective method by which it would be possible to set the algorithms so as to achieve the best compromise between the distortion and the model credibility achieve.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:233691 |
Date | January 2015 |
Creators | Šmirg, Ondřej |
Contributors | Bartušek, Karel, Liberda,, Ondřej, Smékal, Zdeněk |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds