Return to search

Design and Validation of a Computational Model for Study of Scapholunate Joint Kinematics

As computational power has increased, computational modeling has become a very promising tool to model the biomechanics of complex joint systems. Musculoskeletal computational models have become more complex when compared to original iterations which utilized a number of simplifications. This thesis utilized a three-dimensional computational model of the wrist joint structure to investigate scapholunate kinematics. The model accurately represented the bony anatomy of the wrist and hand and represented soft tissue structures such as ligaments, tendons, and other surrounding tissues. Creation of the model was done using commercially available computer-aided design and medical image processing software, and utilized the rigid body modeling methodology. It was validated for scapholunate kinematics against a cadaver study and then utilized to investigate further measures and surgical procedures. The simulations performed by the model demonstrated an accurate anatomical response of wrist function. As better understanding of the biomechanics of the wrist joint is achieved, this model could prove to be an important tool to further investigate wrist mechanics.

Identiferoai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-4920
Date01 January 2014
CreatorsTremols, Edward J
PublisherVCU Scholars Compass
Source SetsVirginia Commonwealth University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rights© The Author

Page generated in 0.0023 seconds