Return to search

The impact of the radiation balance on snowmelt in a sparse deciduous birch forest

The representation of high-latitude surface processes and quantifying surface-climate feedbacks are some of the most serious shortcomings of present day Arctic land surface modelling. The energy balance of seasonally snow-covered sparse deciduous forests at high latitudes is poorly understood and inaccurately represented within hydrological and climate models. Snow cover plays an important role in wintertime fluxes of energy, water and carbon, controlling the length of the active growing season and hence the overall carbon balance of Arctic ecosystems. Snow cover is non-uniform and spatially variable, as wind redistributes snow from areas of exposed open tundra to sheltered areas within the forest, where a deeper snowpack develops. Low solar zenith angles, coupled with sparse deciduous leafless trees, cast shadows across the snow surface. The spatial distribution of canopy gaps determines the timing of direct radiation which penetrates down through the canopy to the snow surface. The forest canopy also excludes incoming longwave radiation and yet also emits longwave radiation to the snow surface. Consequently the forest canopy plays a key role in the radiation balance of sparse forests. To improve our knowledge of these complex processes, meteorological and field observations were taken in an area of highly heterogeneous birch Betula pubescens ssp. czerepanovii forest in Abisko, Sweden during the spring of 2008 and 2009. Detailed measurements of short and longwave radiation above and below the canopy, hemispherical photographs, tree temperatures and snow surveys were conducted to quantify the radiation balance of the sparse deciduous forest. An array of below canopy pyranometers found the mean canopy transmissivity to be 74 % in 2008 and 76 % in 2009. Hemispherical photographs taken at the pyranometer locations analysed with Gap Light Analyzer (GLA) showed reasonable agreement with a mean canopy transmissivity of 75 % in 2008 and 74 % in 2009. The canopy transmissivity was found to be independent of the diffuse fraction of radiation as the canopy is very sparse. A series of survey grids and transects were established to scale up from the below canopy pyranometers to the landscape scale. Hemispherical photographs analysed with GLA showed the sparse forest canopy had a mean transmissivity of 78 % and a mean LAI of 0.25, whereas the open tundra had a mean transmissivity of 97 % and a mean LAI of < 0.01. Snow surveys showed the sparse forest snow depth to vary between 0.34 and 0.55 m, whereas the snow depth in the open tundra varied between 0.12 and 0.18 m. Observations of canopy temperatures showed a strong influence of incident shortwave radiation warming the tree branches to temperatures up to 15 °C warmer than ambient air temperature on the south facing sides of the trees, and up to 6 °C on the north facing sides of the trees. To reproduce the observed radiation balance, two canopy models (Homogenous and Clumped) were developed. The Homogeneous canopy model assumes a single tree tile with a uniform sparse canopy. The Clumped canopy model assumes a tree and a grass tile, where the tree tile is permanently in shade from the canopy and the grass tile receives all the incoming radiation. These canopy models identified the need for a parameter that accounts for the spatial and temporal variation of the shaded gaps within the sparse forest. JULES (Joint UK Land Environment Simulator) is the community land surface model used in the UK Hadley Centre GCM suite. Modifications of the land-surface interactions were included in JULES to represent the shaded gaps within the sparse deciduous forest. New parameterisations were developed for the time-varying sunlit fractions of the gap (flit), the sky-view fraction (fv), and the longwave radiation emitted from the canopy (LWtree). These model developments were informed by field observations of the forest canopy and evaluated against the below canopy short and longwave radiation observed data sets. The JULES Shaded gap model output showed a strong positive relationship with the observations of below canopy shortwave and longwave radiation. The JULES Shaded gap model improves the ratio of observed to modelled short and longwave radiation on sunny days compared to the JULES model. The JULES Shaded gap model reduces the time to snow melt by 2 to 4 days compared to the JULES model, making the model output more aligned with in-situ observational data. This shortening of the modelled snow-season directly impacts on the simulated carbon and water balance regionally and has wider relevance at the pan-Arctic scale. When JULES Shaded Gap was evaluated on the global scale, it improved the modelled snowmass across large areas of sparse forest in northern Canada, Scandinavia and Northern Russia with respect to GlobSnow. The performance of the land surface-snow-vegetation interactions of JULES was improved by using the Shaded gap to model the radiation balance of sparse forests in climate-sensitive Arctic regions. Furthermore these observational data can be used to develop and evaluate high latitude land-surface processes and biogeochemical feedbacks in other earth system models.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:743642
Date January 2017
CreatorsTurton, Rachael Heather
ContributorsEssery, Richard ; Williams, Mathew
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/29567

Page generated in 0.0023 seconds