Dans les domaines de la modélisation et de la simulation numérique, les simulateurs développés prennent parfois en compte de nombreux paramètres dont l'impact sur les sorties n'est pas toujours bien connu. L'objectif principal de l'analyse de sensibilité est d'aider à mieux comprendre comment les sorties d'un modèle sont sensibles aux variations de ces paramètres. L'approche la mieux adaptée pour appréhender ce problème dans le cas de modèles potentiellement complexes et fortement non linéaires repose sur la décomposition ANOVA et les indices de Sobol'. En particulier, ces derniers permettent de quantifier l'influence de chacun des paramètres sur la réponse du modèle. Dans cette thèse, nous nous intéressons au problème de l'estimation des indices de Sobol'. Dans une première partie, nous réintroduisons de manière rigoureuse des méthodes existantes au regard de l'analyse harmonique discrète sur des groupes cycliques et des tableaux orthogonaux randomisés. Cela nous permet d'étudier les propriétés théoriques de ces méthodes et de les généraliser. Dans un second temps, nous considérons la méthode de Monte Carlo spécifique à l'estimation des indices de Sobol' et nous introduisons une nouvelle approche permettant de l'améliorer. Cette amélioration est construite autour des hypercubes latins et permet de réduire le nombre de simulations nécessaires pour estimer les indices de Sobol' par cette méthode. En parallèle, nous mettons en pratique ces différentes méthodes sur un modèle d'écosystème marin. / In the fields of modelization and numerical simulation, simulators generally depend on several input parameters whose impact on the model outputs are not always well known. The main goal of sensitivity analysis is to better understand how the model outputs are sensisitive to the parameters variations. One of the most competitive method to handle this problem when complex and potentially highly non linear models are considered is based on the ANOVA decomposition and the Sobol' indices. More specifically the latter allow to quantify the impact of each parameters on the model response. In this thesis, we are interested in the issue of the estimation of the Sobol' indices. In the first part, we revisit in a rigorous way existing methods in light of discrete harmonic analysis on cyclic groups and randomized orthogonal arrays. It allows to study theoretical properties of this method and to intriduce generalizations. In a second part, we study the Monte Carlo method for the Sobol' indices and we introduce a new approach to reduce the number of simulations of this method. In parallel with this theoretical work, we apply these methods on a marine ecosystem model.
Identifer | oai:union.ndltd.org:theses.fr/2012GRENM064 |
Date | 16 November 2012 |
Creators | Tissot, Jean-yves |
Contributors | Grenoble, Prieur, Clémentine, Blayo, Éric |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0018 seconds