Consider a domain Ω ⊂ RN with Lipschitz boundary and let d(x) = dist(x, ∂Ω). It is well known for p ∈ (1, ∞) that u ∈ W1,p 0 (Ω) if and only if u/d ∈ Lp (Ω) and ∇u ∈ Lp (Ω). Recently a new characterization appeared: it was proved that u ∈ W1,p 0 (Ω) if and only if u/d ∈ L1 (Ω) and ∇u ∈ Lp (Ω). In the author's bachelor thesis the condition u/d ∈ L1 (Ω) was weakened to the condition u/d ∈ L1,p (Ω), but only in the case N = 1. In this master thesis we prove that for N ≥ 1, p ∈ (1, ∞) and q ∈ [1, ∞) we have u ∈ W1,p 0 (Ω) if and only if u/d ∈ L1,q (Ω) and ∇u ∈ Lp (Ω). Moreover, we present a counterexample to this equivalence in the case q = ∞. 1
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:397962 |
Date | January 2019 |
Creators | Turčinová, Hana |
Contributors | Nekvinda, Aleš, Edmunds, David Eric |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0059 seconds