Return to search

Charakterizace funkcí s nulovou stopou pomocí funkce vzdálenosti od hranice / Characterization of functions with zero traces via the distance function

Consider a domain Ω ⊂ RN with Lipschitz boundary and let d(x) = dist(x, ∂Ω). It is well known for p ∈ (1, ∞) that u ∈ W1,p 0 (Ω) if and only if u/d ∈ Lp (Ω) and ∇u ∈ Lp (Ω). Recently a new characterization appeared: it was proved that u ∈ W1,p 0 (Ω) if and only if u/d ∈ L1 (Ω) and ∇u ∈ Lp (Ω). In the author's bachelor thesis the condition u/d ∈ L1 (Ω) was weakened to the condition u/d ∈ L1,p (Ω), but only in the case N = 1. In this master thesis we prove that for N ≥ 1, p ∈ (1, ∞) and q ∈ [1, ∞) we have u ∈ W1,p 0 (Ω) if and only if u/d ∈ L1,q (Ω) and ∇u ∈ Lp (Ω). Moreover, we present a counterexample to this equivalence in the case q = ∞. 1

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:397962
Date January 2019
CreatorsTurčinová, Hana
ContributorsNekvinda, Aleš, Edmunds, David Eric
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0059 seconds