Os modelos de credit scoring têm sido bastante difundidos nos últimos anos como uma importante ferramenta para agilizar e tornar mais confiável o processo de concessão de crédito por parte das instituições financeiras. Esses modelos são utilizados para classificar os clientes em relação a seus riscos de inadimplência. Neste trabalho, é avaliada a aplicabilidade de uma nova metodologia, baseada em pseudo-valores, como alternativa para a construção de modelos de credit scoring. O objetivo é compará-la com abordagens tradicionais como a regressão logística e o modelo de riscos proporcionais de Cox. A aplicação prática é feita para dados de operações de crédito pessoal sem consignação, coletados do Sistema de Informações de Crédito do Banco Central do Brasil. As performances dos modelos são comparadas utilizando a estatística de Kolmogorov-Smirnov e a área sob a curva ROC. / Credit Scoring models have become popular in recent years as an important tool in the credit granting process, making it more expedite and reliable. The models are mainly considered to classify customers according to their default risk. In this work we evaluate the apllicability of a new methodology, based on pseudo-values, as an alternative to constructing credit scoring models. The objective is to compare this novel methodology with traditional approaches such as logistic regression and Cox proportional hazards model. The models are applied to a dataset on personal credit data, collected from the Credit Information System of Central Bank of Brazil. The performances of the models are compared via Kolmogorov-Smirnov statistic and the area under ROC curve.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-28082010-221333 |
Date | 02 August 2010 |
Creators | Liliane Travassos da Silva |
Contributors | Gisela Tunes da Silva, Rinaldo Artes, Antonio Carlos Pedroso de Lima |
Publisher | Universidade de São Paulo, Estatística, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds