Return to search

Toward a Real-Time Recommendation for Online Social Networks

The Internet increases the demand for the development of commercial applications and services that can provide better shopping experiences for customers globally. It is full of information and knowledge sources that might confuse customers. This requires customers to spend additional time and effort when they are trying to find relevant information about specific topics or objects. Recommendation systems are considered to be an important method that solves this issue. Incorporating recommendation systems in online social networks led to a specific kind of recommendation system called social recommendation systems which have become popular with the global explosion in social media and online networks and they apply many prediction algorithms such as data mining techniques to address the problem of information overload and to analyze a vast amount of data. We believe that offering a real-time social recommendation system that can understand the real context of a user’s conversation dynamically is essential to defining and recommending interesting objects at the ideal time.
In this thesis, we propose an architecture for a real-time social recommendation system that aims to improve word usage and understanding in social media platforms, advance the performance and accuracy of recommendations, and propose a possible solution to the user cold-start problem. Moreover, we aim to find out if the user’s social context can be used as an input source to offer personalized and improved recommendations that will help users to find valuable items immediately, without interrupting their conversation flow. The suggested architecture works as a third-party social recommendation system that could be incorporated with other existing social networking sites (e.g. Facebook and Twitter). The novelty of our approach is the dynamic understanding of the user-generated content, achieved by detecting topics from the user’s extracted dialogue and then matching them with an appropriate task as a recommendation. Topic extraction is done through a modified Latent Dirichlet Allocation topic modeling method. We also develop a social chat app as a proof of concept to validate our proposed architecture. The results of our proposed architecture offer promising gains in enhancing the real-time social recommendations.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/42255
Date07 June 2021
CreatorsAlbalawi, Rania
ContributorsYeap, Tet, Benyoucef, Morad
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0021 seconds