Eukaryotic translation initiation factor eIF4E1 (eIF4E1) plays a pivotal role in the control of cap-dependent translation initiation, occurs in P- bodies and is important for the formation of stress granules (SG). Human cells encompass two other non-canonical translation initiation factors capable of cap binding although with a lower affinity for the cap: eIF4E2 and eIF4E3. Here, I investigated the ability of individual eIF4E family members and their variants to localize to SGs and P-bodies in stress-free, arsenite and heat shock conditions. Under all tested conditions, both eIF4E1 and eIF4E2 proteins and all their variants localized to P-bodies unlike eIF4E3 protein variants. Under both arsenite and heat stress conditions all tested variants of eIF4E1 and the variant eIF4E3-A localized to SGs albeit with different abilities. Protein eIF4E2 and all its investigated variants localized specifically to a major part of heat stress-induced stress granules. Further analysis showed that approximately 75% of heat stress-induced stress granules contain all three eIF4Es, while in 25% of them eIF4E2 is missing. Large ribosomal subunit protein L22 was found specifically enriched in arsenite induced SGs. Heat stress-induced re- localization of several proteins typical for P-bodies such as eIF4E2, DCP-1, AGO-2...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:410835 |
Date | January 2020 |
Creators | Frydrýšková, Klára |
Contributors | Pospíšek, Martin, Půta, František, Valášek, Leoš |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds