This thesis presents a tunable 3D real-time interactive simulator of the geometrical displacement of the thoracic diaphragm during physiological and mechanical ventilation. Particular attention is placed on capturing the heterogeneous tissue composition while maintaining computational efficiency and accuracy. The long term goal is to establish an accurate theoretical model to complement the experimental and clinical studies of the side effects associated with mechanical ventilation and to overcome the ethical difficulties of performing time resolved studies on human patients. The deformations are modelled using a commercial 3D model and a mass-spring model together with distance constraints and Verlet integration. The simulator is easily adjusted in real-time to many different cases of ventilation and validated through inspection and comparison with existing models. More research is needed to validate the model using patient specific data, as well as extending the model to include additional physiological and pathophysiological components. Long term goals includes considering the microscopic aspects of cellular mechanics to capture the underlying causes of ventilator-induced diaphragmatic dysfunction.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-202329 |
Date | January 2013 |
Creators | Nilsson, Linus |
Publisher | Uppsala universitet, Avdelningen för beräkningsvetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UPTEC F, 1401-5757 ; 13022 |
Page generated in 0.0022 seconds