In my dissertation, I present ATLAS — the Auto-Training Look-Ahead Scheduler. ATLAS improves service to applications with regard to two non-functional properties: timeliness and overload detection. Timeliness is an important requirement to ensure user interface responsiveness and the smoothness of multimedia operations. Overload can occur when applications ask for more computation time than the machine can offer. Interactive systems have to handle overload situations dynamically at runtime. ATLAS provides timely service to applications, accessible through an easy-to-use interface. Deadlines specify timing requirements, workload metrics describe jobs. ATLAS employs machine learning to predict job execution times. Deadline misses are detected before they occur, so applications can react early.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-125346 |
Date | 21 October 2013 |
Creators | Roitzsch, Michael |
Contributors | Technische Universität Dresden, Fakultät Informatik, Prof. Dr. rer. nat. Hermann Härtig, Prof. Dr. rer. nat. Hermann Härtig, Prof. Dr. Gerhard Fohler |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0025 seconds