Orientador: Marcelo Fábio Gouveia Nogueira / Co-orientador: José Celso Rocha / Banca: Fernando Frei / Banca: Andrea Cristina Basso / Resumo: A classificação morfológica embrionária possui grande importância para inúmeras técnicas laboratoriais (desde pesquisas básicas às aplicadas na reprodução assistida). Entretanto, o método utilizado para realizar a classificação dos embriões em diferentes graus de qualidade sempre foi baseado na subjetividade do avaliador e, por mais que sejam estabelecidos padrões de graus de qualidade e descrições das características morfológicas que categorizam um embrião em cada grau, não há atualmente um método preciso que possa gerar resultados consistentes e confiáveis. Assim, nosso trabalho resultou no desenvolvimento de um software capaz de realizar a classificação da qualidade morfológica de blastocistos bovinos. Utilizamos como base de funcionamento técnicas de inteligência artificial (mais especificamente de Redes Neurais Artificiais e Algoritmos Genéticos). Resultados indicam uma taxa de acerto global de 79,2% na classificação de blastocistos bovinos em 3 graus de qualidade, sendo que para os blastocistos classificados como Excelentes ou Bons (Classe 1) a taxa de acerto é de 82,6%, para os blastocistos classificados como Regulares (Classe 2) é de 16,7% e para os blastocistos classificados como Pobres (Classe 3) a taxa de acerto é de 91,7% / Abstract: Embryonic morphological classification has great importance for numerous laboratory techniques (from basic to applied research in assisted reproduction). However, the method used to perform the classification of embryos in varying degrees of quality has always been based on the subjectivity of the evaluator. Although quality standards and descriptions of morphological characteristics that categorize an embryo in each grade are established, currently there is not an accurate method that can generate consistent and reliable results. Thus, our work resulted in the development of a software able to perform the classification of morphological quality of bovine blastocysts. Artificial Intelligence techniques (such as Artificial Neural Networks and Genetic Algorithms) were used in the development. Results indicate an overall accuracy of 79.2% in the classification of bovine blastocysts in 3 degrees of quality. For blastocysts classified as Excellent or Good (Class 1) the hit rate is 82.6%, for blastocysts classified as Regular (Class 2) is 16.7% and for blastocysts classified as poor (Class 3) the hit rate is 91.7% / Mestre
Identifer | oai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000810245 |
Date | January 2014 |
Creators | Matos, Felipe Delestro. |
Contributors | Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Ciências e Letras (Campus de Assis). |
Publisher | Assis, |
Source Sets | Universidade Estadual Paulista |
Language | Portuguese |
Detected Language | Portuguese |
Type | text |
Format | 127 f. : |
Relation | Sistema requerido: Adobe Acrobat Reader |
Page generated in 0.0016 seconds