Software bugs are expensive. Recent estimates by the US National Institute of Standards and Technology claim that the cost of software bugs to the US economy alone is approximately 60 billion USD annually. As society becomes increasingly software-dependent, bugs also reduce our productivity and threaten our safety and security. Decreasing these direct and indirect costs represents a significant research challenge as well as an opportunity for businesses.
Automatic software bug-finding and verification tools have a potential to completely revolutionize the software engineering industry by improving reliability and decreasing development costs. Since software analysis is in general undecidable, automatic tools have to use various abstractions to make the analysis computationally tractable. Abstraction is a double-edged sword: coarse abstractions, in general, yield easier verification, but also less precise results.
This thesis focuses on exploiting the structure of software for abstracting away irrelevant behavior. Programmers tend to organize code into objects and functions, which effectively represent natural abstraction boundaries. Humans use such structural abstractions to simplify their mental models of software and for constructing informal explanations of why a piece of code should work. A natural question to ask is: How can automatic bug-finding tools exploit the same natural abstractions? This thesis offers possible answers.
More specifically, I present three novel ways to exploit structure at three different steps of the software analysis process. First, I show how symbolic execution can preserve the data-flow dependencies of the original code while constructing compact symbolic representations of programs. Second, I propose structural abstraction, which exploits the structure preserved by the symbolic execution. Structural abstraction solves a long-standing open problem --- scalable interprocedural path- and context-sensitive program analysis. Finally, I present an automatic tuning approach that exploits the fine-grained structural properties of software (namely, data- and control-dependency) for faster property checking. This novel approach resulted in a 500-fold speedup over the best previous techniques. Automatic tuning not only redefined the limits of automatic software analysis tools, but also has already found its way into other domains (like model checking), demonstrating the generality and applicability of this idea.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:BVAU.2429/1502 |
Date | 11 1900 |
Creators | Domagoj, Babić |
Publisher | University of British Columbia |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Page generated in 0.002 seconds