Element CXI's Elemental Computing Array (ECA) delivers faster reconfiguration time and higher computational density than Field Programmable Gate Arrays (FPGAs) with similar computational power. It provides higher computational power than Digital Signal Processors (DSPs) with similar power consumption and price. It also utilizes a library-based graphical development environment promoting ease of use and fast development. In this thesis, the design and implementation of a ZigBee receiver on an Element CXI ECA-64 platform is presented. The ZigBee receiver is evaluated through simulations and implementation on an ECA device. During the design and implementation of the ZigBee receiver, some design experience and tips are concluded. The design methodology on the ECA is studied in detail to assure the implementation's correctness, since the methodology of the ECA is different from that of other platforms. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/31516 |
Date | 26 March 2008 |
Creators | Zhang, Chen |
Contributors | Electrical and Computer Engineering, Athanas, Peter M., Martin, Thomas L., Buehrer, R. Michael, Reed, Jeffrey H. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | Thesis_chen.pdf |
Page generated in 0.0019 seconds