Return to search

Water Table and Nutrient Dynamics in Neotropical Savannas and Wetland Ecosystems

The Tropical savannas of central Brazil (cerrado) and the Everglades wetland (Florida) ecosystems are ideal systems to study landscape spatial mosaics and their interactions. Both ecosystems show a variety of plant physiognomies distributed within small spatial scales and elevation gradients. Such variety of plant physiognomies provide an opportunity to investigate the roles of climate, topography, nutrient availability and water table dynamics as determinants of plant physiognomic distributions, and their role in shaping regional systems. South Florida Wetlands and the tropical savannas of central Brazil are examples of hydrologically-controlled ecosystems. In hydrologically-controlled ecosystems water sources, the availability of nutrients, and the patterns of water movement play important roles in determining vegetation structure and function. The main objective of this study was to understand ecosystem level processes that shape different physiognomies in two hydrologically-controlled ecosystems. I conducted field work at the IBGE ecological reserve, a field experimental station located in Brasilia, Brazil. I also worked at the Everglades National Park in an area located near the south entrance of the Park in Homestead, Florida. I carried out three interconnected studies investigating water and nutrient dynamics: (1) In a Brazilian savanna I manipulated levels of litter input and measured changes to soil properties, organic matter decomposition and tree growth. I found that changes in litter input affect soil physicochemical properties and soil biochemical processes. I also found that litter dynamics influence tree growth through their effects on soil physicochemical properties. (2) I also studied the effect of water table depth and its temporal variation on spatial patterns of vegetation distribution in the cerrado landscape. I monitored diurnal and seasonal changes in water table depth along two tree-density and topographic gradients. In addition, I measured woody species composition, growth rates of four tree species, litter production, soil nutrients, and nutrient resorption efficiency along those two gradients. I found that water table depth has an important role in determining the spatial distribution of cerrado physiognomies; it also affects tree growth, species composition and nutrient resorption efficiency. (3) In the Everglades I studied patterns of underground water uptake by two vegetation types. I monitored seasonal and diurnal changes in water table depth in a Hammock forest, in a stand dominated by the invasive woody species Schinus terebinthifolius, as well as the water level in an adjacent lake. I estimated stand level transpiration using two different approaches: with sap flow measurements and diurnal oscillations in water table levels. Then, I calculated the total quantity of groundwater withdrawn by evapotranspiration for the wet and dry seasons in the Hammocks and in the exotic invaded site and then compared the results. I found that water uptake by Everglades trees is well coupled to diurnal changes in water table depth and that the amount of water withdrawn from the groundwater was larger during the wet season than during the dry season. Finally, I detected hydrological feedbacks between different vegetation types and nearby bodies of water. Results of this study contributes to the current knowledge of ecosystem level processes in tropical and subtropical ecosystems where water circulation and water availability play a dominant role in shaping vegetation structure and function.

Identiferoai:union.ndltd.org:UMIAMI/oai:scholarlyrepository.miami.edu:oa_dissertations-1388
Date07 May 2010
CreatorsVillalobos-Vega, Randol
PublisherScholarly Repository
Source SetsUniversity of Miami
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceOpen Access Dissertations

Page generated in 0.0017 seconds