Return to search

Batch and Column Transport Studies of Environmental Fate of 3-nitro-1,2,4-triazol-5-one (NTO) in Soils

NTO (3-nitro-1,2,4-triazol-5-one) is one of the new explosive compounds used in insensitive munitions (IM) and developed to replace traditional explosives, TNT and RDX. Data on NTO fate and transport is needed to determine its environmental behavior and potential for groundwater contamination. In this study, we measured how NTO in solution interacts with different types of soils and related soil properties to transport and fate behavior. We conducted a series of kinetic and equilibrium batch soil sorption experiments and saturated column transport studies under steady-state and transient conditions. NTO adsorbed very weakly to the studied soils. Adsorption coefficients (Kds) measured for NTO in a range of soils in batch experiments were less than 1 cm³ g⁻¹. There was a highly significant negative relationship between measured NTO adsorption coefficients and soil pH (P = 0.00011). In kinetic experiments, first order transformation rate estimates ranged between 0.0004 h⁻¹ and 0.0221 h⁻¹. There was a general agreement between batch and column-determined fate and transport parameters. However, transport studies showed an increase in the NTO transformation rate as a function of time, possibly indicating microbial growth.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/321539
Date January 2014
CreatorsMark, Noah William
ContributorsDontsova, Katerina, Brusseau, Mark, Dontsova, Katerina, Brusseau, Mark, Curry, Joan
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Thesis
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0019 seconds