Return to search

Prediction Models for Estimation of Soil Moisture Content

This thesis introduces the implementation of different supervised learning techniques for producing accurate estimates of soil moisture content using empirical information, including meteorological and remotely sensed data. The models thus developed can be extended to be used by the personal remote sensing systems developed in the Center for Self-Organizing Intelligent Systems (CSOIS). The dfferent models employed extend over a wide range of machine-learning techniques starting from basic linear regression models through models based on Bayesian framework. Also, ensembling methods such as bagging and boosting are implemented on all models for considerable improvements in accuracy. The main research objective is to understand, compare, and analyze the mathematical backgrounds underlying and results obtained from dfferent models and the respective improvisation techniques employed.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-2093
Date01 December 2011
CreatorsGorthi, Swathi
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0036 seconds