Return to search

Spatial and Temporal Trends in Greenhouse Gas Fluxes from a Temperate Floodplain along a Stream-Riparian-Upland Gradient

Increased floodplain and wetland restoration activity has raised concerns about potential impacts on the release of greenhouse gases (GHGs) to the atmosphere due to restored connectivity between aquatic and terrestrial ecosystems. Research has shown GHG fluxes from hydrologically active landscapes such as floodplains and wetlands vary spatially and temporally in response to primary controls including soil moisture, soil temperature, and available nutrients. In this study, we performed a semimonthly sampling campaign measuring GHG (CO2, CH4, and N2O) fluxes from six locations within a third-order stream floodplain. Site locations were based on dominant landscape positions and hydrologic activity along a topographic gradient including a constructed inset floodplain at the stream margin, the natural levee, an active slough, the general vegetated floodplain, a convergence zone fed by groundwater, and the upland area. Flux measurements were compared to abiotic controls on GHG production to determine the most significant factors affecting GHG flux from the floodplain. We found correlations between CO2 flux and soil temperature, organic matter content, and soil moisture, CH4 flux and pH, bulk density, inundation period length, soil temperature, and organic matter content. But minimal correlations between N2O flux and the measured variables. Spatially, our results demonstrate that constructed inset floodplains have higher global warming potential in the form of CH4 than any other site and for all other GHGs, potentially offsetting the positive benefits incurred by enhanced connectivity. However, at the reach scale, total CO2 flux from the soil remains the greater influence on climate since the area covered by these inset floodplains is comparatively much smaller than the rest of the floodplain. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/71424
Date23 June 2016
CreatorsEnsor, Breanne Leigh
ContributorsBiological Systems Engineering, Scott, Durelle T., Hester, Erich T., Hession, W. Cully, Strahm, Brian D., Thomas, R. Quinn
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0024 seconds