Return to search

Low root-zone temperatures and soybean (Glycine max (L.) Merr.) N2- fixing symbiosis development

This research tested the hypotheses that (a) suboptimal root-zone temperatures (RZT) limit the soybean-Bradyrhizobium N$ sb2$-fixing symbiosis primarily through an inhibition of symbiosis establishment and (b) this inhibition is modified by the genotype of micro- or macrosymbiont. Controlled environment and field experiments were conducted utilizing two soybean genotypes and six B. japonicum strains. At 19$ sp circ$C RZT fixed nitrogen levels decreased by 30-40%, predominantly due to a restriction in the latter stages of nodule development. Reductions of 10% and 30% in specific nodule activity rates at 19$ sp circ$C and 15$ sp circ$C RZT respectively, indicated nodule function to be comparatively insensitive to low RZT. Soybean genotypes did not differ in seedling nodulation or N$ sb2$-fixation under cool-soil, field or controlled environment, conditions. At all temperatures, commercial B. japonicum strain 532C was more efficient, but not effective, than strains obtained from the cool-soils of Northern Japan. Under cool-soil field conditions, two of the latter strains increased seedling nodulation and N$ sb2$-fixation.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.56677
Date January 1992
CreatorsLynch, Derek H. (Derek Henry)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Plant Science.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001304645, proquestno: AAIMM80457, Theses scanned by UMI/ProQuest.

Page generated in 0.002 seconds