Return to search

Numerical modeling of soil flow and pressure distribution on a simple tillage tool using computational fluid dynamics

<p>Soils, in general, undergo both elastic and plastic deformations upon loading. Strain dependant anisotropic elasto-plastic models are required for realistic modeling for soil-tool mechanics that will address issues like stress history and soil anisotropy. Although several such models have been proposed, the science of coupled poro-mechanical analysis of an unsaturated soil has not been fully addressed.</p><p>Tillage tool modeling is primarily concerned with the analysis of soil deformation patterns and development of force prediction models for design optimization. Most of the models are based on quasi-static soil failure patterns that cause difficulty in accurately predicting soil-tool behaviour and soil forces for high speed operation. In recent years efforts have been made to improve the conventional analytical and experimental models by numerical approaches. Numerical simulations of soil-tool interactions using finite element modeling (FEM) and discrete element method (DEM) were mostly based on a solid mechanics approach. Due to limitations of constitutive relations, predictions of these numerical models have not been able to address tillage dynamics with high shear rates. The contribution of this research was to study the dynamics of soil-tool interaction using computational fluid dynamics (CFD) from the perspective of soil visco-plastic behavior.</p><p>A motorised soil rheometer was developed for evaluating soil visco-plastic parameters for CFD simulations. The apparatus was used to determine soil yield stress and viscosity at different soil moisture and compaction levels.</p><p>Three-dimensional CFD analyses were carried out using a commercial software CFX 4.4 to observe soil failure patterns around a tool and the pressure distribution on and around the tool. Duct flow as well as free-surface flow simulations of visco-plastic soil as a non-Newtonian Bingham material indicated soil deformation comprising of plastic flow and plug flow patterns. The soil failure front advancement demonstrated a critical speed range of 4 to 6.5 m s-1 where advancement of the failure front did not increase with speed. Soil pressure on the tool surface increased with the tool operating speed. Pressure distribution on the tool surface and draft requirement agreed well with the published literature based on experimental results and FEM analysis. The CFD approach, in its first attempt to tillage process, demonstrated its greater potential for dynamic modeling of soil-tool interaction.</p>

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-10282005-081153
Date28 October 2005
CreatorsKarmakar, Subrata
ContributorsMeda, Venkatesh, Laguë, Claude, Kushwaha, Radhey Lal, Fotouhi, Reza, Baik, Oon-Doo, Watts, K. Chris
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-10282005-081153/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0024 seconds