The temporal dynamics of hydrological model performance gives insights into errors that cannot be obtained from global performance measures assigning a single number to the fit of a simulated time series to an observed reference series. These errors can include errors in data, model parameters, or model structure. Dealing with a set of performance measures evaluated at a high temporal resolution implies analyzing and interpreting a high dimensional data set. This paper presents a method for such a hydrological model performance assessment with a high temporal resolution and illustrates its application for two very different rainfall-runoff modeling case studies. The first is the Wilde Weisseritz case study, a headwater catchment in the eastern Ore Mountains, simulated with the conceptual model WaSiM-ETH. The second is the Malalcahuello case study, a headwater catchment in the Chilean Andes, simulated with the physicsbased model Catflow. The proposed time-resolved performance assessment starts with the computation of a large set of classically used performance measures for a moving window. The key of the developed approach is a data-reduction method based on self-organizing maps (SOMs) and cluster analysis to classify the high-dimensional performance matrix. Synthetic peak errors are used to interpret the resulting error classes. The final outcome of the proposed method is a time series of the occurrence of dominant error types. For the two case studies analyzed here, 6 such error types have been identified. They show clear temporal patterns, which can lead to the identification of model structural errors.
Identifer | oai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:4511 |
Date | January 2009 |
Creators | Reusser, Dominik, Blume, Theresa, Schaefli, Bettina, Zehe, Erwin |
Publisher | Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Geoökologie |
Source Sets | Potsdam University |
Language | English |
Detected Language | English |
Type | Postprint |
Format | application/pdf |
Source | Hydrology and earth system sciences 13 (2009), 7, S. 999 - 1018 |
Rights | http://creativecommons.org/licenses/by/3.0/ |
Page generated in 0.0021 seconds