Subirrigation systems are generally used in humid areas to provide suitable moisture conditions for plant growth. These systems can also be used to reduce pesticide loadings from agricultural lands, since they tend to keep the discharging waters within farm boundaries for extended periods of time. This allows for greater pesticide microbial and chemical degradation. / A three-year field lysimeter study was initiated to investigate the role of subirrigation systems in reducing the risk of water pollution from the three most commonly used herbicides in Quebec, namely atrazine (2-chloro-4[ethylamino]-6[isopropylamino]-1,3,5-triazine), metribuzin (4-am ino-6(1,1-di meth yl eth yl)-3-(meth yl thio)-1,2,4-tria zin-5(4H)-one), and meto lach lor (2-chlo ro-N-(2-eth yl-6-methyl phen yl)-N-(2-meth oxy-1-meth yl eth yl)acet amide). Eighteen PVC lysimeters, 1 m tall x 0.45 m diameter, were packed with a sandy soil. Three water table management treatments, i.e. two subirrigation treatments with constant water table depths of 0.4 and 0.8 m, respectively, and a free drainage treatment in a completely randomized design with three replicates were used. Grain corn (Zea mays L.) and potatoes (Solanum tuberosum L.) were grown on lysimeters, and herbicides were applied each year at the locally recommended rates at the beginning of each summer. Soil and water samples were collected at different time intervals after each natural or simulated rainfall event. Herbicides were extracted from soil and water samples and were analyzed using Gas Chromatography. / From the three years results (1993--1995), it has been concluded that all three herbicides were quite mobile in this sandy soil, as they leached to the 0.85 m depth below the soil surface quite early in the growing season. This suggests that if the drainage effluent or seeping waters from sandy soils of agricultural lands in southern Quebec drain freely, they may be considered to be a serious non-point source of pollution to the water bodies. The results have also shown that herbicide concentration decreased with soil depth as well as with time, meaning that the higher herbicide residues were found at top layers, and soon after the herbicide application. The herbicide mass balance study revealed that when the drainage effluent was kept within the lysimeters under the subirrigation setup, there was a statistically significant reduction of atrazine and metribuzin residues (shorter half lives) in the adsorbed and liquid phases. However, the reduction in metolachlor concentration under the subirrigation system was not statistically significant. These findings suggest that subirrigation, combined with certain herbicides can significantly reduce the herbicide loadings from corn and potato farms in southwestern Quebec, and become environmentally beneficial. / A computer simulation model (PRZM2), was used to simulate atrazine, metribuzin, and metolachlor leaching in the lysimeters, under subsurface drainage conditions. The simulated values for all three chemicals in most of the cases followed the leaching pattern of observed data. But the model either under- or over-estimated the herbicide concentrations in the soil. This could have been caused by simplistic instantaneous linear adsorption/desorption of herbicides, and inadequacy of conventional Darcian approach for the treatment of matrix flow.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.34649 |
Date | January 1997 |
Creators | Jebellie, Seyed J. |
Contributors | Prasher, Shiv O. (advisor) |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Doctor of Philosophy (Department of Agricultural and Biosystems Engineering.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 001615847, proquestno: NQ36990, Theses scanned by UMI/ProQuest. |
Page generated in 0.002 seconds