Return to search

Denitrification and nitrous oxide dynamics in the soil profile under two corn production systems

Concerns for environmental quality stimulate the development of various management strategies that mitigate nutrient losses to the environment. / Field experiments were conducted at St. Emmanuel, Quebec, from 1998 to 2000 to investigate the combined effects of water table management and N fertilizer application rates on corn yield, concentrations of NO3- -N in the soil profile and tile subsurface drainage water, denitrification and N2O production rates, and N2O:N2O+N 2 production ratios in the soil profile. There were two water table treatments: free drainage (FD) with open drains at a 1.0 m depth from the soil surface and subirrigation (SI) with a water table depth of 0.6 m below the soil surface, and two N fertilization rates: 120 kg N ha-1 (N120) and 200 kg N ha-1 (N 200) arranged in a split-plot design. Compared to FD, subirrigation reduced NO3--N concentration in the soil by up to 50% and in drainage water by 55 to 73%. Water table had little effect on corn yield during the study period. Greater denitrification rates under SI were not accompanied with greater N2O emissions as ratios of N2O:N2O+N2 were lower under SI than in FD plots. Denitrification rate, N2O emissions, and their ratios were unaffected by N rate. / A second field experiment was initiated from 1999 to 2000 to assess impacts of tillage systems on NO3--N, denitrification, N2O, and ratios of denitrification end-products (N2O:N 2O+N2). The experiment was conducted on long-term momocropped corn experimental plots under conventional tillage (CT), reduced tillage (RT), and no-till (NT), located at the Macdonald Research Farm, McGill University. Soil NO3--N concentrations tended to be lower under RT than under NT or CT. Denitrification and N2O were similar among tillage systems. / Approximately 50% of soil denitrification activity was measured within the 0.15--0.45 m soil layer. Consequently, we propose that sampling the 0--0.15 m soil layer alone, as is usually done, may not give an accurate picture of soil denitrification activity. Dissolved organic carbon concentrations remained high in all soil depths sampled, but was not affected by water table, N rate or tillage system.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.38482
Date January 2002
CreatorsElmi, Abdirashid A.
ContributorsMadramootoo, C. (advisor), Hamel, C. (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Natural Resource Sciences.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001956422, proquestno: NQ85704, Theses scanned by UMI/ProQuest.

Page generated in 0.0024 seconds