Superacidic mesoporous materials containing covalently embedded PTA were synthesized by sol-gel method. Tetraethyl orthosilicate (TEOS) and phosphotungstic acid (PTA) were used as precursors in the synthesis, ionic and nonionic surfactants were used as pore-forming agents, the reaction proceeded in acidic media. TEM images revealed mesoporous structure with embedded PTA clusters. FT-IR spectra of obtained materials contained characteristic bands of PTA at 957 cm-1. Synthesized catalysts had high BET surface area and high concentration of acidic sites. Alkylation of 1,3,5-trimethylbenzene by 1-decene demonstrated high catalytic activity. The catalyst obtained with Pluronic P123 as a template was the most effective and resulted in highest conversion of 1-decene into alkylated products. Covalent embedding of PTA clusters in addition to thermal and chemical stability of synthesized catalysts enabled their recyclability. Catalysts remained active during subsequent cycles of alkylation.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-5178 |
Date | 01 May 2020 |
Creators | Kuvayskaya, Anastasia |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Rights | Copyright by the authors. |
Page generated in 0.002 seconds