Master of Engineering / Global warming and diminishing energy supplies are two major current concerns. Disposal of plastic wastes is also a major concern. The aim of this research is to address these three concerns by developing a solar powered process, using waste plastics as fuel to generate energy. Research into: i) solar concentrators for high temperature thermochemical processes, and ii) pyrolysis/gasification of waste plastics has been separately reported in the literature. In this study the aim was to bring these fields of research together to design a solar receiver-reactor suitable for the production of a synthesis gas, consisting of hydrogen, from waste plastics. To achieve this aim, studies of plastic decomposition behaviour using the thermal analysis method known as thermogravimetric analysis were conducted. Solar concentrators and their potential to be used for thermochemical processes were also studied. Firstly, the thermal decomposition behaviour of common plastics, namely low density polyethylene (LDPE), high density polyethylene (HDPE), polyethylene terephthalate (PET) and polyvinyl chloride (PET), were studied using thermogravimetry at heating rates of 5, 10, 20, 50 and 100 ÂșC/min. The kinetic parameters for the decomposition were determined from these experiments. Secondly, a simple solar receiver-reactor in which the plastic decomposition could be achieved was designed. The solar receiver-reactor designed was a quartz tube reactor which can be placed in the focus of a dish type parabolic concentrator capable of generating up to 3 kW in the focus of diameter 50 mm. The thermogravimetric analysis of plastic samples showed that LDPE, HDPE and PET have a single-step decomposition, whereas PVC has a two-step decomposition. The first step was related to the release of hydrogen chloride from the PVC and the second step was related to the release of hydrocarbon from the polymer backbone. If PVC is pretreated to release HCl it can be mixed with other plastics for a single step decomposition. It is likely that a single step plastic decomposition can be achieved in a directly irradiated solar receiver-reactor to generate useful gases consisting of hydrogen.
Identifer | oai:union.ndltd.org:ADTP/232765 |
Date | January 2007 |
Creators | SHAKYA, BIKRAM D |
Publisher | University of Sydney., School of Chemical and Biomolecular Engineering |
Source Sets | Australiasian Digital Theses Program |
Detected Language | English |
Rights | The author retains copyright of this thesis., http://www.library.usyd.edu.au/copyright.html |
Page generated in 0.0014 seconds