Lanthanide (III) complexes are used extensively in solar conversion devices, such as Luminescent Solar Concentrators (LSCs) and Luminescent Down-Shifting (LDS) for their peculiar characteristics of narrow band emission, avoidance of re-absorption losses due to large Stokes shift and possibility of high photoluminescence quantum yield (PLQY). The study has looked into the synthesis of Ln (III) complexes of the general formula: [Ln(hfac)3DPEPO], where DPEPO = bis(2-(diphenylphosphino)phenyl)ether oxide, and hfac = hexafluoroacetylacetonate. The work presented in this thesis focuses on the synthesis, and subsequent photophysical characterisation of these Ln(III) complexes, plus characterisation and spectroscopic study of [Tb(pobz)3(hacim)2], (where Hpobz = phenoxybenzoic acid, and Hacim = acetylacetone imine), yielding results that open new design of functional Ln(III) systems. Spectroscopic study of Chromium dioxalate and analogous compounds has revealed that with the appropriate design, Cr(III)Ln(III) energy transfer can be achieved, while study of polyaromatic hydrocarbons (PAH) such as coronene, enable to explore a ligand with better absorption in the whole UV region. These results open attractive perspectives for light-conversion systems, such as LSC devices.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:578468 |
Date | January 2013 |
Creators | Congiu, Martina |
Contributors | Robertson, Neil; Jones, Anita |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/7724 |
Page generated in 0.002 seconds