This work is devoted to a study of dynamical and collisional processes, governing populations of small bodies in the Solar System. It pays special attention to asteroid families and Jupiter Trojans. Librating around L4 and L5 Lagrangian points of the Sun-Jupiter-asteroid system, these asteroids are believed to be captured from the trans- Neptunian region during a giant planet system instability about 4 Gy ago. We discovered (back in 2011) there is only one significant collisional family among Trojans, associated with C-type asteroid (3548) Eurybates, i.e., one of the targets for the upcoming 'Lucy' mission. Detailed analysis of new proper resonant orbital elements, colours and albedos, together with statistical significance computations, allowed us to find five more collisional families: Hektor, (9799), Arkesilaos, Ennomos, and (247341). The discovery of the first D-type family associated with (624) Hektor was the most surprising, because it is the most primitive taxonomic type. Using long-term dynamical simulations of synthetic families, evolving by chaotic diffusion, we estimated the ages of the Eurybates and Hektor families, approximately (2.5±1.5) Gy for both. We also studied impact processes by means of the smoothed-particle hydrodynamics (SPH). We simulated cratering events on (624) Hektor, the origin...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:453693 |
Date | January 2021 |
Creators | Rozehnal, Jakub |
Contributors | Brož, Miroslav, Granvik, Mikael, Delbo, Marco |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds