Return to search

Zinc oxide-silicon heterojunction solar cells by sputtering

Heterojunctions of n-ZnO/p-Si solar cells were fabricated by RF sputtering ZnO:Al onto boron-doped (100) silicon (Si) substrates. Zinc Oxide (ZnO) films were also deposited onto soda lime glass for electrical measurements. Sheet resistance measurements were performed with a four-point-probe on the glass samples. Values for samples evacuated for 14 hours prior to deposition increased from 7.9 to 10.17 and 11.5 O/□ for 40 W, 120 and 160 W in RF power respectively. In contrast, those evacuated for 2 hours started with a higher value of 22.5 O/□, and decreased down to 7.6 and 5.8 O/□. Vacuum annealing was performed for both the glass and the Si samples. Current-voltage measurements were performed on the ZnO/Si junctions in the dark and under illumination. Parameters such as open-circuit voltage, Voc; short-circuit current, Isc; fill factor, FF; and efficiency, eta were determined. A maximum efficiency of 0.25% among all samples was produced, with an I sc of 2.16 mA, Voc of 0.31V and a FF of 0.37. This was a sample fabricated at an RF power of 80 W. Efficiency was found to decline with vacuum annealing. Furthermore, interfacial state density calculated based on capacitance-voltage measurements showed an increase in the value with vacuum annealing. The results found suggest that the interface states may be due to an interdiffusion of atoms, possibly those of Zn into the Si surface. The Electron Beam Induced Current (EBIC) method was used to determine diffusion length to be at a value ∼40--80 mum and therefore a minority carrier lifetime calculated of 3 musec. It was also used to determine the surface recombination velocity (SRV) of the fractured surface of the Si bulk from the fabricated solar cells. An SRV of ∼500 cm/sec was determined from the fractured Si surface, at a point located at 30 and 20 mum away from the junction interface.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.112583
Date January 2007
CreatorsShih, Jeanne-Louise.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Engineering (Department of Electrical and Computer Engineering.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 002712549, proquestno: AAIMR51474, Theses scanned by UMI/ProQuest.

Page generated in 0.0178 seconds