Return to search

Stitch weld effect on solar collector efficiency factor

The thermal effects of stitch welding the coolant conduits of a water-cooled flat plate solar collector to its absorber plate have been studied. A physical model of the heat transfer process from the plate to the fluid flowing inside the tube has been presented. The heat transfer coefficient based on the difference between bond temperature and fluid bulk mean temperature is an important factor in determining the collector efficiency factor F'.
The upper and lower limits of the actual value of F' have been predicted by considering two extreme boundary conditions to which the fluid is subjected. For a thick and conductive tube wall, F' does not depend on spot size and spot spacing, and tends to an upper limit of 0.883. For a thin and non-conductive tube wall, the boundary condition comprises of a series of step changes in both the axial and circumferential directions of the heat flux. In this case, the heat transfer coefficient and hence F' approach their lower limits which are determined by the welding spot configuration. It was also found that F' increases with the following parameters: the spot angle; the percentage of tube length being welded; and the number of spots among which the welding is being distributed. Furthermore, the temperature distribution inside the fluid has also been computed for this case. / Applied Science, Faculty of / Mechanical Engineering, Department of / Graduate

Identiferoai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/25115
Date January 1985
CreatorsLo, Andy Ka-Ming
PublisherUniversity of British Columbia
Source SetsUniversity of British Columbia
LanguageEnglish
Detected LanguageEnglish
TypeText, Thesis/Dissertation
RightsFor non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.

Page generated in 0.0019 seconds