In this doctoral thesis, a novel method for the determination of primary bile acids cholic acid and chenodeoxycholic acid is presented. Bile acids play various vital roles in the mammalian body. Moreover, their determination is extremely helpful in liver and biliary disease diagnosis and management. These saturated organic compounds lack strong chromophores and fluorophores in their structure, and thus are usually hard to detect in spectroscopy. For this reason, either instrumentally advanced but expensive methods, such as mass spectrometry, or less reliable enzymatic methods are commonly employed in bile acids quantitation. Hence, the demand for simple and reliable methods for their determination is strong. Bile acids are also known to be virtually inert for direct electrochemical oxidation. Herein, a simple method for their chemical activation for electrochemical oxidation on bare electrode materials was developed, optimized and applied to cholic acid and chenodeoxycholic acid determination. The activation is based on a dehydration reaction of a primary bile acid with 0.1 mol L-1 HClO4 in acetonitrile (water content 0.55%) that introduces double bond(s) into the originally fully saturated steroid core. This naturally increases the electron density in the structure, and thus allows electrochemical...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:434499 |
Date | January 2020 |
Creators | Klouda, Jan |
Contributors | Schwarzová, Karolina, Skopalová, Jana, Vyskočil, Vlastimil |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0059 seconds