The thesis deals with the application of compensators andswitches based on power electronics in AC transmission anddistribution systems. The objective of the studieddevices/equipment is the power flow and voltage control intransmission systems and the mitigation of voltage sags andmomentary interruptions to critical loads in distributionsystems. For validating the power electronics based devices/equipmentdescribed in the thesis, scaled models at a real-time simulatorhave been built. Simulation results of these models arepresented and discussed in the thesis. The equipment studied in the thesis exploit the fast controlactions that can be taken by power electronics devices, whichare much faster than the speed of conventional equipment andprotection systems, based on electromechanical devices. In thisway, the power quality of distribution systems is improved,regarding duration and magnitude of voltage sags (dips) andmomentary interruptions, which are the most relevant types ofdisturbances in distribution systems. The thesis presents some compensators based onforced-commutation voltage-source converters for correctingvoltage sags and swells to critical loads. The seriesconverter, usually denoted Dynamic Voltage Restorer (DVR), hasbeen proved suitable for the task of compensating voltage sagsin the supply network. The use of solid-state devices ascircuit breakers in distribution systems has also been studiedwith the objective of achieving fast interruption or limitationof fault currents. The location and practical aspects for theinstallation of these solid-state breakers are presented. Ithas beenshown that a configuration based on shunt and seriesconnected solid-state devices with controllable turn-offcapability can also provide voltage sag mitigation, without theneed of transformers and large energy storage elements. The operation and control of two Flexible AC TransmissionSystem (FACTS) devices for voltage and power flow control intransmission systems, namely the Static Synchronous Compensator(STATCOM) and the Unified Power Flow Controller (UPFC),respectively, are also studied. A faster response compared totraditional equipment consisting of mechanically based/switchedelements is then achieved. This allows a more flexible controlof power flow and a secure loading of transmission lines tolevels nearer to their thermal limits. The behaviour of thesedevices during faults in the transmission system is alsopresented. Keywords: power electronics, power quality, voltagesags, voltage-source converters, Custom Power, FACTS, real-timesimulations, solid-state devices.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-3018 |
Date | January 2000 |
Creators | Magalhães de Oliveira, Marcio |
Publisher | KTH, Elkraftteknik, Institutionen för elkraftteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, monograph, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Trita-EES, ; 0003 |
Page generated in 0.0022 seconds