Les piles à combustible à oxyde solide (SOFC) offrent une alternative réelle aux technologies classiques de génération d’électricité en étant à la fois propre, efficace et respectueuse de l’environnement. Toutefois, leur principale limitation réside en leur durée de vie et fiabilité limitées dues à leur haute température de fonctionnement. Des recherches intenses de matériaux pour SOFC sont actuellement poursuivies pour essayer d’abaisser la température de fonctionnement de ces dispositifs afin de dépasser ces limitations. Parmi les différents candidats qui ont émergé, le Silicate de Lanthane (LSO) et le Zirconate de Baryum dopé à l'Yttrium (BZY) ont été identifiés comme des alternatives potentielles à utiliser comme matériaux d’électrolyte pour SOFC à température intermédiaire.De manière surprenante, alors que de nombreuses études concernent l’optimisation microstructurale et électrochimiques des composants de la pile, très peu d’études concernant l’évaluation de leurs propriétés mécaniques et de leur influence sur la durée de vie du dispositif.La fiabilité et durée de ces dispositifs dépend non seulement de leur stabilité électrochimique, mais aussi de la capacité de leur structure à supporter les contraintes résiduels issus du procédé de fabrication et de contraintes mécaniques de fonctionnement. En raison du fait que les SOFC sont composés d'empilement de plusieurs cellules individuelles qui, à leur tour, sont constituées de couches fragiles individuelles en contact étroit, ces contraintes proviennent principalement de la différence entre le coefficient de dilatation thermique et les propriétés élastiques des couches adjacentes et la déformation du fluage. Des contraintes non coordonnées peuvent entraîner une défaillance mécanique d'une seule cellule et avoir des conséquences dramatiques sur l'ensemble de la pile. De ce fait, la connaissance des propriétés mécaniques des composants de la cellule est une étape importante pour préserver l’intégrité et le développement des SOFC. Le but de cette thèse est la fabrication et l’étude des propriétés structurale, microstructurales et mécaniques de matériaux de type LSO et BZY. / Solid oxide fuel cells (SOFCs) offer a real alternative to classical technologies for the generation of electricity by clean, efficient and environmental-friendly means. Nevertheless, the main limitation of SOFCs lies in their unsatisfactory durability and reliability due to the high operating temperatures and thermal cycling characteristic of these devices. An intense search is currently underway for materials for SOFCs with the objective of lowering the working temperature and then overcoming these limitations. Among the different candidates which have emerged, Lanthanum Silicate (LSO) and Yttrium-doped Barium Zirconate (BZY) were considered as potential alternatives to be used as electrolyte materials for SOFC at intermediate-temperature. While numerous studies have been devoted to characterizing and optimizing the microstructural and electro-chemical properties of SOFC components, as yet there is little research available on mechanical properties and the influence they have on SOFC lifespan.The reliability and durability of these devices depends not only on their electro-chemical stability, but also on the ability of their structure to withstand residual stresses arising from the cell manufacturing process and mechanical stresses from operation. Owing to the fact that SOFCs are composed by stacking of several single cells which in turn are made up of individual brittle layers in close contact, these stresses mainly originate from the difference between the coefficient of thermal expansion and elastic properties of adjacent layers and creep deformation. Mismatched stresses can result in the mechanical failure of a single cell and have dramatic consequences on the whole stack. Therefore, knowledge of mechanical properties of the cell components becomes an important issue for the mechanical integrity and development of SOFCs.The aim of this PhD thesis is the fabrication and structural, microstructural and mechanical characterization of LSO and BZY.
Identifer | oai:union.ndltd.org:theses.fr/2017SACLC064 |
Date | 06 November 2017 |
Creators | Ciria matamoros, Desirée |
Contributors | Université Paris-Saclay (ComUE), Universidad de Sevilla (Espagne), Dezanneau, Guilhem, Jiménez Melendo, Manuel |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French, English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds